This is a device which integrates measuring equipment and power supply equipment necessary for positron annihilation method which can analyze molecular level nanoscale space structure. In lifetime measurement, high-speed pulse signals from two BaF$_2$ scintillators are captured by 3 Gsps board to calculate lifetime. In CDB measurement, coincidence is taken from two HPGe semiconductor detectors, and a two-dimensional histogram is generated from the crest value. Furthermore, AMOC measurement that correlate the lifetime and momentum are also realized by combining these modules.

Measurement Mode
1. Lifetime
2. Coincidence Doppler Broadening (CDB)
3. Age-Momentum Correlation (AMOC)

ADC
- **Lifetime**: 2 channels, 3 Gsps, 8-bit
- **CDB**: 2 channels, 100 Msps, 14-bit

Time Resolution
- FWHM 192 ps (511 keV @ 22Na, BaF$_2$ scintillator)
- FWHM 160 – 190 ps (Certified standard quartz glass)

Energy Resolution
- 1.23 keV (512 keV @ 106Ru)
- 1.69 keV (1.33 MeV @ 60Co)

High Voltage Power Supply
- 2 channels, -4000V for PMT
- 2 channels, +5000V for HPGe semiconductor detector
 *Included Preamp power supply

Communication I/F
- Ethernet (TCP/IP)

Accessories
- Application Software for Data acquisition, Instruction Manual

Lifetime measurement mode
- **Stop**: 511 keV
- **Start**: 1.274 MeV
- Radiation source: 22Na, Sample: Polycarbonate

CDB measurement mode
- Lifetime spectra

AMOC measurement mode
- Lifetime - Momentum Correlation 3D graph
- Momentum spectrum
- Lifetime spectrum
- Sample: Silica

Manufacture of Radiation and Radioactivity measurement devices

TechnoAP Co., Ltd.

2976-15 Mawatari, Hitachinaka-shi, Ibaraki, 312-0012, Japan

*Images is for illustration purpose.
*Please note that contents may change without prior notice.