デジタルパルスプロセッサ

APV8108

取扱説明書

第2.6.2版 2022年8月

株式会社 テクノエーピー 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail : info@techno-ap.com

安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下、弊社)の製品をご購入いただき誠にありがとうございます。 ご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正しくご使 用ください。

弊社製品のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

🚫 禁止事項

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- ・ 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

<u>注意事項</u>

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「当社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア)「当社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

一目次一

1.		概要	2	
1.	1.		概要	
1.	2.		特徴	6
2.		仕棣	<u>.</u>	
З.		外観	<u>]</u>	
4.		セッ	トアップ	
4.	1.		アプリケーションのインストール	
4.	2.		接続	
4.	З.		ネットワークのセットアップ	
5.		アフ	パリケーション画面	
5.	1.		起動画面	
5.	2.		config - DPP タブ	
5.	З.		config - OPTION タブ	
5.	4.		file タブ	
5.	5.		status タブ	
5.	6.		wave タブ	
5.	7.		spectrum タブ	
5.	8.		time spectrum タブ	
5.	9.		PSD タブ	
6.		計測	L	
6.	1.		ヒストグラムモード	
6.	1.	1.	環境	
6.	1.	2.	電源と接続	
6.	1.	З.	アプリケーション起動及び設定	
6.	1.	4.	波形確認	
6.	1.	5.	計測開始	
6.	1.	6.	計測終了	
6.	2.		リストモード	
6.	2.	1.	準備	
6.	2.	2.	エネルギースペクトルの確認	
6.	2.	З.	設定	41
6.	2.	4.	計測開始	41
6.	2.	5.	計測終了	41
6.	З.		時間スペクトル計測	
6.	З.	1.	環竟	
6.	З.	2.	電源と接続	
6.	З.	З.	準備	

6.	З.	4.	エネルギースペクトルの確認	43
6.	З.	5.	設定	45
6.	З.	6.	計測終了	46
6.	4.	(7	プション) PSD モード	47
6.	4.	1.	準備	47
6.	4.	2.	入力波形の確認	47
6.	4.	З.	エネルギースペクトルの確認	47
6.	4.	4.	設定	47
6.	4.	5.	計測開始	48
6.	4.	6.	計測終了	48
7.		終了		49
8.		ファイル	/	50
8.	1.	ヒス	ペトグラムデータファイル	50
8.	2.	波形	データファイル	52
8.	З.	リフ	ペトデータファイル	53
8.	4.	(7	「プション) PSA リストデータファイル	54
8.	5.	(7	「プション) PSD データファイル	55
8.	6.	(7	プション)リスト波形データファイル	56
8.	7.	(7	けつション)リストパイルアップ波形データファイル	60
9.		トラブル	シューティング	61
9.	1.	接続	江ラーが発生する。	61
9.	2.		?ンドエラーが発生する	61
9.	З.	ヒス	くトグラムが表示されない	62
9.	4.	ЮJ	?ドレスを変更したい	62

1. 概要

1.1. 概要

テクノエーピー社製 DPP(Digital Pulse Processor、デジタルパルスプロセッサ)製品 APV8108 (以下、本機器)は、高速・高分解能 ADC(1GHz, 14bit または 12bit)を 8CH 搭載した波形解析ボ ードです。

FPGA による 1GHz リアルタイムの解析に加え、信号処理によるデッドタイムの無い高速処理を、高時間分解能・高スループットで実現しています。全ての ADC は 1GHz クロックにて同期動作をしており、 複数の高速なシンチレーション検出器からの信号解析などにもご利用いただけます。また、複数ボード間の同期処理にも対応しており、多 CH 系の解析にも拡張が容易です。

本書は、本機器について説明するものです。

- ※ 文章中、信号入力のチャンネルは"CH"、ビン数を表すチャネルは"ch"と大文字小文字を区別してあります。
- ※ 文章中の、"リスト"と"イベント"は同意義です。
- ※ 型式の APV は VME 規格サイズの基板型を表しています。この基板型に電源を供給するためには VME 電源ラック(弊社製品 APV9007等)が別途必要となります。また、この基板をユニット (筐体)に納め、AC 電源を直接使用できるタイプの型式には、APV の代わりに APU が付きま す。例として、VME 型 APV8108 をユニットに納めた型式は APU8108 となります。本書では APU8108 の説明も含みます。
- ※ 型式に含まれる-14 は搭載している ADC の分解能が 14bit であることを表示、-12 は搭載している ADC の分解能が 12bit であることを表示しています。便宜上この-14 や-12 を省略し、型式 APV8108 とする場合があります。
- ※ 本機器にはオプションとして機能を追加することが可能です。本書ではその機能部分を(オプション)と明記します。

1.2. 特徴

主な特徴は下記の通りです。

- 用途例としては、高速タイミング、高時間分解能、高計数、波形弁別、粒子弁別(n/γ)
- 対象検出器としては、シンチレータ(プラスチック、LaBr₃(Ce)、液体シンチレータ等)、ワイヤー チェンバーや MPPC などで、光電子増倍管(PMT)からの出力信号や FAST-NIM 信号などを直接 入力可能です。
- ・ デジタルパルスプロセッサがデジタル CFD、QDC によって時間情報とエネルギー情報を取得。
- ・ 波形フィットによりサンプリング内挿をもとめ高い時間分解能を実現。
- ・ オプションで中性子/ガンマ線弁別 PSD 機能や波形情報 LIST-WAVE など追加可能。
- ギガビットイーサネット (TCP/IP) によるデータ収録

図 1 DPP 構成

複数ボード間の同期処理にも対応しており、多CH系の解析にも拡張が容易です。

図 2 複数台構成

DPP への設定やデータの取得は、付属の DPP アプリケーション(以下本アプリ)で行います。本アプリ は Windows 上で動作します。付属アプリ以外にも、コマンドマニュアルを元にプログラミングすること も可能です。DPP との通信は TCP/IP や UDP でのネットワーク通信のみため、特別なライブラリは使用 せず、Windows 以外の環境でもご使用頂けます。

2. 仕様

(1) アナログ入力	
・チャネル数	8CH
・入力レンジ	$\pm 1 \vee$
・入力インピーダンス	50Ω
(2) ADC	
・サンプリング周波数	1GHz
• 分解能	14bit または 12bit
• SNR	68.3dBFS@605MHz
(3) 性能	
・QDC アウトプット	2Mcps以上
•時間分解能	3.90625ps
(4) 機能	
・動作モード	ヒストグラムモード、リストモード(時間ヒストグラム)、波形モー ド
・イベント転送レート	約 20MByte/秒。1 イベント 16Byte(128Bit)の場合。
(5) オプション	
• 機能	PSD2次元ヒストグラム、波形リストモード、パイルアップ波形リス トモード
(6) 通信インターフェース	
• LAN	TCP/IP Gigabit Ethernet 1000Base-T、データ転送用 UDP コマンド送受信用
(7) 消費電流	
+5V	6.0A(最大)
+12V	1.0A(最大)
-12V	O.4A(最大)
(8) 形状	
・VME型(VME6U)	APV8108
・ユニット型	APU8108
(9) 外径寸法	
•VME型(VME6U)	20 (W) x 262 (H) x 187 (D) mm
・ユニット型	300 (W) x 56 (H) x 335 (D) mm
(10)重量	
・VME型(VME6U)	約 460g
・ユニット型	約3130g
(11) PC環境	
• OS	Windows 7 以降、32bit 及び 64bit 以降
• ネットワークインターフェース	
• 画面解像度	Full HD(1920×1080)以上推奨

3. 外観

写真 1 APV8108

- (1) LED P(緑色)は電源 ON 時点灯、V(橙色)とE(赤色)は未使用。
- (2) CH1~CH8 信号入力用 LEMO 社製 00.250 互換コネクタ。入力レンジは±1V、 入力インピーダンスは 50Ω。
- (3) SYNC-O 同期タイミング信号出力用 LEMO 社製 00.250 互換コネクタ。基板間 で時刻を調整させるためのタイミング信号を出力します。
- (4) SYNC-I 同期タイミング信号入力用 LEMO コネクタ。基板間で時刻を調整させるためのタイミング信号を入力します。

※注意※ SYNC-OとSYNC-Iは、ケーブルにて相互接続してご使用ください。

写真 2 SYNC-O 端子とSYNC-I 端子とを相互接続

- (5) CLK-O 外部クロック信号出力用 LEMO 社製 00.250 互換コネクタ。外部機器 と同期を取ることができます。25MHz、Duty サイクル 50%の LVTTL 信号を出力します。
- (6) CLK-I 外部クロック信号入力用 LEMO 社製 00.250 互換コネクタ。外部クロックを使用して外部機器と同期を取ることが可能です。外部クロックを使用する際は、電源を OFF の状態で、基板上ジャンパ JP3 を 1-4 CPU に変更後、25MHz、Duty サイクル 50%の LVTTL または TTL 信号を CLK-I に入力してから電源を投入します。
- (7) VETO 外部 VETO (ベト) 信号入力用 LEMO 社製 00.250 互換コネクタ。
 LVTTL または TTL 信号を入力します。High の間データの取得を無効にします。
- (8) GATE 外部ゲート信号入力用 LEMO 社製 00.250 互換コネクタ。LVTTL または TTL 信号を入力します。入力が High の間データの取得を有効にします。
- (9) LAN イーサネットケーブル用 RJ45 コネクタ。1000Base-T。

4. セットアップ

4.1. アプリケーションのインストール

本アプリはWindows上で動作します。ご使用の際は、使用するPCに本アプリのEXE(実行形式)ファ イルとNational Instruments 社のLabVEW ランタイムエンジンをインストールする必要があります。 本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラに は、EXE(実行形式)ファイルとLabVEW のランタイムエンジンが含まれており、同時にインストール ができます。インストール手順は以下の通りです。

- (1) 管理者権限で Windows ヘログインします。
- (2) 付属 CD-ROM 内 Application (または Installer) フォルダ内の setup.exe を実行します。対話 形式でインストールを進めます。デフォルトのインストール先は"C:¥TechnoAP"です。この フォルダに、本アプリの実行形式ファイルと設定値が保存された構成ファイル config.ini がイン ストールされます。
- (3) スタートボタン TechnoAP APV8108 (または APV8108-8516) を実行します。
- 尚、アンインストールはプログラムの追加と削除から APV8108 を選択して削除します。

4.2. 接続

- (1) 本機器とPCをイーサネットケーブルで接続します。PCによってはクロスケーブルをご使用ください。ハブを使用する場合はスイッチングハブをご使用ください。
- (2) SYNC-O 端子と SYNC-I 端子とを相互接続します。

写真 3 SYNC-I/O 端子接続例

4.3. ネットワークのセットアップ

本機器と本アプリの通信状態を下記の手順で確認します。

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。以下は変更例です。
 IPアドレス 192.168.10.2 ※本機器割り当て以外のアドレス
 サブネットマスク 255.255.255.0
 デフォルトゲートウェイ 192.168.10.1
- (2) VME ラックまたは筐体の電源をON にします。電源投入後 10 秒程待ちます。
- (3) PCと本機器の通信状態を確認します。Windowsのコマンドプロンプトにてping コマンドを実行し、本機器とPCが接続できるかを確認します。
 本機器のPアドレスは基板上にテプラで明記しております。必ず確認をしてください。
 ネットワーク情報が以下の場合を例にして説明をします。
 Pアドレス 192.168.10.128
 サブネットマスク 255.255.255.0
 デフォルトゲートウェイ 192.168.10.1

> ping 192.168.10.128

図 3 通信接続確認 ping コマンド実行

(4) 本アプリを起動します。デスクトップ上のショートカットアイコン APV8108 または Windows ボタンから APV8108 を検索して起動します。 本アプリを起動した時に、本機器との接続に失敗した内容のエラーメッセージが表示される場合 は、後述のトラブルシューティングを参照ください。

5. アプリケーション画面

5.1. 起動画面

Dev1	\sim	IP	address	192.	168.10	128		nemo [mo	de wav		→ me tin	easurem ne(sec)	ent 24:	00:00	•	neasun node	ment rea	al time	\sim	list re byte(d byte) 16000	٥	1
wave		me	asuremer de	t re	al time		m tir	easurer ne	ment	24:0	0:0	0	real time	00	00:0	0	live time	00:	:00:00)	file size(I	lyte)		0	san	npling	1G				1
) file	sta pp	OPTIC	N																												
			sig	nal		basel	ine	throch	old .		CF	Ð	CFD		CFD	000	Q	×	QDC	Q	×	QDC	QDO	2	QDC						
le	s	gnal type	(n:))	polarity	filter(µs)	(digit)	1	type	tur (m	ultiple)	delay (ns)	_	(digit)	sum/	eak (n	etnigger ;)	r filter (ns)	rar	egrai nge(ns)	full scak (multipl) (dig	it)	(digit)						
	no	omal sig omal sig	V 0	말	neg 🗸	4µ 129u	~	100		CFD	/ ×0	.21	8ns 8ns	~	20	이 sum 이 sum		ns 🗸	10ns 10ns	V 64	1 9 1 0	1/1 .	/ 10 / 10	면	8000	<u>भ</u>					
:	n	omal sig	v 0	¢	neg 🗸	129µ	~	100	•	CFD	, ×0	.21 🗸	8ns	~	20	¢ sum	~ -	ns 🗸	10ns	v 64	1 0	1/1 ,	/ 10	-	8000	н					
	n	omal sig	✓ 0		neg 🗸	129µ	~	100		CFD	× ×0	.21 🗸	8ns	~	20	¢∣ sum	~ -	ns 🗸	10ns	~ 64	1 0 . 0	1/1 ,	/ 10	(¢)	8000	1					
	n	omai sig omal sig		•	neg 🗸	129µ	~	100		CFD	/ ×0	.21 🗸	8ns	\sim	20	¢∣ sum		ns 🗸	10ns	× 64	• •	1/1 ,	/ 10		8000	1					
	n	omal sig	~ O	4	neg 🗸	129µ	\sim	100	•	CFD	, ×0	.21 🗸	8ns	~	20	¢ sum	-	ns 🗸	10ns	~ 64	4 0	1/1 ,	/ 10	¢	8000	н					
	n	omal sig	 ✓ O 	¢	neg 🗸	129µ	\sim	1000	0	CFD	, ×0	.21 🗸	8ns	\sim	500	\$ sum	~ -	ns 🗸	10ns	v 1	200 🗢	1/512	/ 10	¢	8000	Я					
																													OFF		
																														N/OEE	
] energy	specerum o		
																												I time cou	ctrum ON/C	1 FF	
																												time sp	ctrum ON/0		
spect	um	timesp	ectrum	PSD																								_ time spi	ctrum ON/0	/++	
spect	um	timesp	ectrum	PSD																								time spi	ctrum ON/0	trig	ger
spect	um	timesp	ectrum	PSD																		0		-	СН		type	time spi	trigger edae	trig SIC	gger 3
spect 110- 100-	um	timesp	ectrum	PSD																		•••••		:	CH CH1 CH1	>	type	time spi	trigger edae pos threshold	trig SIC	gger 3 G1
spect 110- 100- 90-	um	timesp	ectrum	PSD																		•••••			CH CH1 CH1 CH1		type rav CFI	time spi	trigger edae pos threshold 98	trig SIC (digit)	gger 3 G1
spect 110- 100- 90- 80-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1		type rav CFI Fib	time spi	trigger edae pos threshold 98 trigger po	trig SIC (digit)	gger 3 G1
spect 110- 100- 90- 80-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8	$\langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$	type rav CFI Fib rav		trigger edae pos threshold 98 trigger po 10	trig SIC (digit)	gger 3 G1
spect 110- 100- 90- 80- 70-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8		type rav CFI Fib rav CFI		trigger edoe pos threshold 98 trigger po 10 wave con	trig Si(digit)	gger 3 G1
spect 110- 100- 90- 80- 70- 60-		timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8 CH8		type rav CFI Fib rav CFI Fib	time spin	trigger edoe pos threshold 98 trigger po 10 wave con 1/1	trig SIC v SI digit) int int int	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 50-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8	< $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	type rav CF Fib rav CF Fib rav		trigger edge pos threshold 98 trigger po 10 wave con 1/1	trig SIC V SI digit) int int int free run	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 50- 50-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8	< $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	type rav CF Fib rav CF Fib rav	time spin	trigger edge pos threshold 98 trigger po 10 wave con 1/1 wave	trig Sil digit) ¢ int ¢ free run nulation	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 50- 50- 50- 40-	um	timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8 CH8		type raw CF Fib raw CF Fib Fib raw	time spin	trigger edge pos threshold 98 trigger po 10 wave con 1/1 accur e conti	trig Sil digit) int int int free run nulation tue	gger 3 G1
spect 110- 100- 80- 70- 60- 50- 50- 50- 40- 30-		timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8		type rav CF Fib rav CF Fib rav	time spin	trigger edae pos threshold 98 trigger po 10 wave con 1/1 wave	single	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 50- 50- 50- 40- 30- 30- 20-		timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8		type rav CF Fib rav CF Fib rav	time spi	trigger edde pos threshold 98 trigger pc 10 wave con 1/1 wave accur conti	trig SIC (digit) (digit) () () () () () () () () () () () () ()	gger 3 G1
spect 110- 100- 80- 70- 60- 50- 50- 30- 30- 30- 20-		timesp	ectrum	PSD																		•			CH CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8 CH8		type raw CF Fib raw CF Fib raw	time span	trigger edge pos threshold 98 trigger po 10 wave con 1/1 wave accur y conti	trig SIC (digit) (int int int int int int int single int single +	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 50- 50- 50- 30- 30- 20- 10-		Emesp		PSD																		0			CH CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 C		type raw CF Fib raw		trigger edoe pos threshold 98 10 wave con 1/1 wave accur y conti	trig SIG (digit) init init init init init init init i	gger 3 G1
spect 110- 100- 80- 70- 70- 50- 30- 30- 20- 10- 0		Emesp		PSD																		0			CH CH1 CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8		type raw CF Fib raw CF Fib raw		trigger edge pos threshold 98 trigger pc 10 1/1 1/1 2 wave conti	trig SIC SIC digit) to int int int int int free run nulation nue single te X.Y Scale	gger 3 G1
spect 110- 100- 90- 80- 70- 60- 60- 40- 30- 20- 10- 0- -10- -10-		Emesp	ectrum	PSD																		0			CH CH1 CH1 CH1 CH1 CH1 CH8 CH8 CH8 CH8		type raw CFF Fib raw CFF Fib raw		trigger edge pos threshold 98 trigger pc 10 wave con 1/1 \vert vave accur \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	trig SIC (digit) (digit) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	gger 3 G1
spect 110-1 90 80- 70- 60 60 90		Emesp	ectrum	PSD																		• • •			CH CH1 CH1 CH1 CH1 CH1 CH1 CH3 CH8 CH8 CH8		type raw CFI Fib raw CFI Fib raw		trigger edge pos threshold 98 trigger po 10 wave con 1/1 wave cont 2 conts	trig SIC idigit) int int int int free run nulation single ke + X,Y Scale - alibration	gger 3 G1
spect 110 100 90 80 - 50 - 50 - 50 - 20 - 10 - - 10 - - - - - - - - - - - - -		Emesp Internet internet intern	ectrum	P5D	40 !!			70	80	90	100		0 120	13	0 14	0 150		170	180	190	200	211			CH CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 C		type raw CFI Fib raw	t l v v v v v v v v v v v v v v v v v v	trigger edos pos threshold \$ 10 wave con 1/1 \$ 20 wave con 1/1 \$ 20 wave con 1/1 \$ 20 wave con 1/1 \$ 20 \$ 20 \$ 20 \$ 20 \$ 20 \$ 20 \$ 20 \$ 2	Implementation Implemen	90er 3 G1

図 4 起動画面(オプション構成や更新により画像が異なる場合があります)

メニュー

File – open config	設定ファイルの読み込み。
File – open histogram	ヒストグラムデータファイルの読み込み。
File - open wave	波形データファイルの読み込み。
File - open PSD	PSD2 次元グラフ用CSV データファイルの読み込み。
File - open list for PSD	PSD2 次元グラフ用リストデータファイルの読み込み。
File - save config	現在の設定をファイルに保存。
File - save histogram	現在のヒストグラムデータをファイルに保存。
File - save wave	現在の波形データをファイルに保存。
File - save PSD	PSD2 次元グラフ用CSV データファイルの保存。
File - save image	本アプリ画面をPNG 形式画像で保存。
File - quit	本アプリ終了。
Edit - copy setting of CH1	CH タブ内の CH1 の設定を他の全 CH の設定に反映。
Edit - copy setting of CH1 to all modules	CH タブ内の CH1 の設定を他の全機器全 CH の設定に反映。
Edit - IP configuration	本機器のIPアドレスを変更。

取扱説明書 APV8108

calibration	calibration を実行	テします。wave 波形に乱れがある場合実行します。
Config	本機器へ全項目を	設定。
Clear	本機器内のヒスト	グラムデータを初期化。
Start	本機器へ計測開始	
Stop	本機器へ計測停止	- •
device	対象機器を選択。	
IP address	対象機器のPアト	ドレス。構成ファイルにて定義し、deviceで選択した機器のIP
	アドレスを表示。	
memo	任意テキストボッ	クス。計測データ管理用にご使用ください。
mode	動作モードを選択	します。
	hist	入力信号を積分しスペクトルを表示します。
	wave	入力信号をデジタイズし波形を表示します。
	list	入力信号について、時間、CH、積分の情報を1 イベントと
		し、バイナリファイルとして出力、保存することができます。
		時間スペクトルやPSD2次元ヒストグラムを取得する際にも
		使用します。
	list-wave	(オプション)list データの後に波形データを付加して出力し
		ます。
	list-pileup	(オプション)パイルアップした場合に list データ中に波形
		データを挿入して出力します。
	list-coinc-wave	(オプション) コインシデンスした list データと波形データ
		を合わせて出力します。コインシデンスはCH1及びCH2の
		み有効です。
	list-com	(オプション)複数のボード間でタイミングを合わせて計測
		をする場合に使用します。CH1 を common signal 入力端
		子として使用し、スタート後ジッターの少ない早いパルスを
		入力します。
measurement time(sec)	計測時間を設定。	設定範囲は最大48時間。
measurement mode	計測モード。real	time または live time を選択。選択した時間モードで計測が
	終了します。	
list read byte(byte)	リストデータの 1	回の読み出しサイズを設定します。 1 イベントの当たりリス
	トデータサイズカ	「10byteの場合は、設定範囲1000byteから100,000byte
	までを1000byt	e刻みで設定します。1 イベントの当たりリストデータサイズ
	が 16byte の揚	合は、設定範囲 1600byte から 160,000byte までを
	1600byte 刻み ⁻	で設定します。
acq. LED	計測中に点滅。	
error LED	エラー発生時点灯	۲ ₀
mode	設定中の動作モー	ド名称を表示。
measurement mode	計測モード。 real	time または live time を表示。

measurement time	設定した計測時間を表示。
real time	有効先頭CHのリアルタイム(実計測時間)。
live time	有効先頭 CH のライブタイム(有効計測時間)。real time - dead time
file size(Byte)	保存中のリストデータファイルのサイズを表示します。 SI 表記法で
	0.789M、10.100M、1.230G 等と表示します。
sampling	対象機器のサンプリング周波数を表示します。単位はHz。
・タブ	
config	入力 CH に関する設定。
file	データのファイル保存に関する設定。
status	スタータス情報を表示
wave	入力波形、CFD 波形、フィルタ波形データの表示。
spectrum	スペクトル(ヒストグラム)表示、ROI(Region Of Interest)の設定。
timespectrum	リストデータの時間情報から予め設定した 2 つの CH の時間差スペクトルを表
	示と、ROI(Region Of Interest)の設定及び時間分解能算出結果の表示。
PSD	リストデータの各種情報から、CH1 とCH2 とでそれぞれ設定した QDC デー
	タでの2次元スペクトルを表示。

5. 2. config - DPP タブ

config file status

	DP	P OPTION																						
CH enable		signal type	signal delay (ns)	polarity	baselin restore filter(µ	ert s) (hreshold (digit)	timing type	CFD function (multiple)	CFD delay 1G / 500M (ns)		CFD walk (digit)	QC	DC m/peak	QDC pretrig (ns)	ger	QDC filter (ns)	QD0 inte rang	C gral ge(ns)	QDC full scale (multiple)	QDC LLD (digit)		QDC ULD (digit)	
CH1 :		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	\$	1/32 🗸	10	\$	8000 🗢	
CH2 :		nomal sig 🔍	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	+	1/32 🗸	10	÷	8000 🗢	
CH3 :		nomal sig 🔍	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	•	1/32 🗸	10	÷	8000 🗢	
CH4		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	÷.	8000 🗢	
CH5		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD 、	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	÷	8000 🗢	
CH6		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD 、	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	\$	1/32 🗸	10	÷	8000 🗢	
CH7		nomal sig 🗸	0 🗘	pos 🗸	4μ	\sim	200 🗘	CFD 、	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	\$	1/32 🗸	10	¢.	8000 🗢	
CH8		nomal sig 🔍	0 🗘	pos 🗸	4μ	\sim	200 🗘	CFD 、	, x0.21 🗸	10ns / -	\sim	100	\$ si	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	¢.	8000 🗢	
CH9 :		nomal sig 🔍	0 🗢	pos 🗸	4µ	\sim	200 🗘	CFD	, ×0.21 🗸	10ns / -	\sim	100	\$ si	um 🗸	-8ns	\sim	10ns 🗸	152	+	1/32 🗸	10	\$	8000 🗢	
CH10 :		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD \	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	\$	1/32 🗸	10	÷	8000 🖨	
CH11 :		nomal sig 🗸	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD \	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	+	1/32 🗸	10	+	8000 🗢	
CH12 :		nomal sig 🔍	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	÷	8000 🗢	
CH13 :		nomal sig 🔍	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ st	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	÷	8000 🗢	
CH14 :		nomal sig 🔍	0 🗢	pos 🗸	4μ	\sim	200 🗘	CFD 、	, x0.21 🗸	10ns / -	\sim	100	\$ SI	um 🗸	-8ns	\sim	10ns 🗸	152		1/32 🗸	10	÷.	8000 🗢	
CH15		nomal sig 🔍	0 🗢	pos 🗸	4µ	\sim	200 🗢	CFD	, x0.21 🗸	10ns / -	\sim	100	\$ st	um 🗸	-8ns	\sim	10ns 🗸	152	+	1/32 🗸	10	÷	8000 🗢	energy spectrum ON/O
CH16		nomal sig 🔍	0 🗘	pos 🗸	4µ	\sim	200 🗢	CFD	, ×0.21 🗸	10ns / -	\sim	100	\$ SL	um 🗸	-8ns	\sim	10ns 🗸	152	-	1/32 🗸	10	+	8000 🗢	time spectrum ON/OFF

図 5 config - DPP タブ

CH使用可否。通常は全CHをenable(押下)状態に設定します。
入力波形のタイプを選択します。
fast sig NIM 信号や Timing 信号入力時。
nomal sig fast sig 以外の時。
入力信号を本機器内部で遅延します。最大遅延時間は2000ns(2us)です。
入力信号の極性。正極性の場合は pos、負極性の場合は neg を選択します。
ベースラインレストアラの時定数を設定します。Ext(自動ベースラインレスト
アラ無し)、Fast、4µs、85µs、129µs、260µs から選択します。通常
は85µsに設定します。
入力信号の波形取得の閾値を設定します。単位は digit です。設定範囲は0から
8191 です。wave モードでraw の波形を見ながら、ノイズレベルより大きい
値を設定します。
threshold Set above noise

APV8108 及び APV8516 のコンスタントフラクションタイミングは FPGA によるデジタル信号処理 にて実現しております。

s(n) = fv(n) - v(n - delay)

当社で開発したデジタル信号処理のアルゴリズムは、サンプリングした波形データから最小二乗法による 多項式近似を用います。

$$L(a, b, c) = \sum_{i=1}^{N} \{y_i - (ax_i^2 + bx_i + C)\}^2$$

を最小となる a,b,c のパラメータを探して CFD であればゼロクロス点(WALK)、リーディングエッジ であればスレッショルド点の内挿を得ることで、より精密な時間情報を計算しています。 なお FPGA によりパイプライン形式で計算をすることで、一連の演算時間は約 100ns 以下と非常に高速 に計算されるため、デットタイムが小さく高スループットを可能としております。

timing type タイムスタンプする際の波形を、CFD 波形または LE 波形から選択します。

LE リーディングエッジ(Leading Edge Timing、LET やLED も同意です) あるトリガーレベル t に到達したタイミングです。トリガー取得タイミングは a'とb'のように波高が変われば時間も異なります。

図 6 リーディングエッジ (Leading Edge Timing)の考え方

CFD コンスタントフラクションタイミング(Constant Fraction Disicriminator Timing) 下図の波形gとhのゼロクロスタイミングであるCFDは、波形の立ち上がり時

間が同じであれば、波高が変化しても一定である、という特徴があります。

図7 コンスタントフラクションタイミング(Constant Fraction Disicriminator Timing)の考え方

CFD functionCFD 波形整形用に元波形を縮小するための倍率。0.03 倍、0.06 倍、0.09 倍、
0.12 倍、0.15 倍、0.18 倍、0.21 倍、0.25 倍、0.28 倍、0.31 倍、0.34 倍、
0.37 倍、0.40 倍、0.43 倍、0.46 倍 から選択します。

 CFD delay
 CFD 遅延時間を設定します。APV8108 は 1ns から 16ns まで 1ns 単位で設定します。

 定します。

CFD walk タイムスタンプする閾値を設定します。単位は digit です。wave モードで CFD の 波形を見ながら、O クロス位置より近辺の値で設定します。

QDC sum/peak QDC データの出力形式を選択します。PEAK 値、SUM 値から選択します。

COLD(digit) GDC のOLD (Opper Level Discriminator) を設定します。単位は digit です。 この閾値より上の積分値はタイムスタンプデータ、積分値データを取得しません。 LLD より大きい値に設定します。設定範囲は0から 8191 です。

- PSD ON/OFF (オプション) list モードでリストデータ取得中の PSD2 次元ヒストグラム等の表示 の有無を選択します。リストデータのみを取得したい場合はチェックを外します。 高計数の時 ON にすると、リストデータの取得が遅くなるので注意ください。 energy spectrum ON/OFF list モードでリストデータ取得中の spectrum 表示の有無を選択します。リストデー タのみを取得したい場合はチェックを外します。高計数の時 ON にすると、リスト
- time spectrum ON/OFF list モードでリストデータ取得中の time spectrum 表示の有無を選択します。リス トデータのみを取得したい場合はチェックを外します。高計数の時 ON にすると、 リストデータの取得が遅くなるので注意ください。

データの取得が遅くなるので注意ください。

5. 3. config - OPTION タブ

config	fil	e st	atus																						
		DPP	ОРТ	101	N																				
CH enable			rise start c (digit)	nt	rise stop (digi	cnt t)	fall start (dig	cnt t)	fall stop (digit	cnt t)	total start (dig	l t cnt it)	total stop (digi	cnt t)	PSA full s (mult	cale tiple)	list del (ns	wave ay i)		list-wa data (digit)	ave)	list-wa compi (multij	ive ress ple)	list format	
CH1	:		5	÷	10	+	20	‡	130	+	10	+	250	÷	1/2	\sim	8]	÷	128	+	1/2	\sim	LIST-WAVE	\sim
CH2	:		5	\$	10	¢	20	¢	130	¢	10	¢	250	¢.	1/2	\sim	8		\$	128	\$	1/2	\sim	LIST	\sim
CH3	:		5	÷	10	¢	20	¢	130	¢	10	÷	250	÷	1/2	\sim	8		÷	128	-	1/2	\sim	LIST	\sim
CH4	:		5	÷	10	÷	20	¢	130	 	10	-	250	 	1/2	\sim	8		÷	128	 	1/2	\sim	LIST	\sim
CH5	:		5	\$	10	¢	20	¢	130	+	10	-	250	 	1/2	\sim	8		\$	128	+	1/2	\sim	LIST	\sim
CH6	:		5	\$	10	÷	20	\$	130	÷	10	-	250	÷	1/2	\sim	8		÷	128	+	1/2	\sim	LIST	\sim
CH7	:		5	\$	10	+	20	\$	130	-	10	-	250	 	1/2	\sim	8		\$	128	+	1/2	\sim	LIST	\sim
CH8	:		5	÷	10	¢	20	¢	130	¢	10	¢	250	¢	1/2	\sim	8		\$	128	¢	1/2	\sim	LIST	\sim

図 8 config - OPTION タブ (オプションPSA (Pulse Height Analysis) とlist-wave 設定)

(1) (オプション) PSA

PSA は list モード時の追加データとして、取得波形の立ち上がり部分 RISE、立ち下がり部分 FALL、波形全体 TOTAL の積分範囲等に関する設定をします。PSA 演算では、入力波形が負極性の場合は反転して正極性とし、波形は常に正極性とします。

rise start cnt(digit) 立ち上り部分の積分値 RISE の対象範囲の開始位置です。threshold を超えた位置から、その手前の範囲を設定します。設定範囲は1から498(498ns=498×1ns)です。

rise stop cnt(digit) 立ち上り部分の積分値 RISE の対象範囲の終了位置です。前述の rise start cnt から 積分をする範囲を設定します。設定範囲は 1 から 16383 (16383ns=16383×1ns)です。

RISE 値の算出例:

設定 threshold:50、rise start cnt:5、rise stop cnt:8、PSA full scale:1/1 の場合、threshold を超えた位置の5 点手前から8 点分、下図の緑枠線部分を積分 します。その積分値をPSA full scale 倍してリストデータの RISE 値とします。

- fall start cnt(digit) 立ち下がり部分の積分値 FALL の対象範囲の開始位置です。threshold を超えた位置から、積分範囲の開始位置を設定します。設定範囲は1から 16383 (16383ns=16383×1ns)です。
- fall stop cnt(digit) 立ち下がり部分の積分値 FALL の対象範囲の終了位置です。前述の fall start cnt から積分をする範囲を設定します。設定範囲は1から16383 (16383ns=16383×1ns)です。

FALL 値の算出例:

設定 threshold: 50、fall start cnt: 5、fall stop cnt: 25、PSA full scale: 1/1 の場合、FALL 値は threshold を超えて5 点目から 25 点分、下図の青枠線部分を 積分します。その積分値を PSA full scale 倍してリストデータの FALL 値とします。

図 10 FALL の対象範囲設定例

total start cnt(digit) 波形全体積分値 TOTAL の対象範囲の開始位置です。 threshold を超えた位置か ら、その手前の範囲を設定します。設定範囲は1から498(498ns=498×1ns) です。

total stop cnt(digit) 波形全体積分値 TOTAL の対象範囲の終了位置です。前述の total start cnt から積分をする範囲を設定します。設定範囲は 1 から 16383 (16383ns=16383×1ns)です。

TOTAL 値の算出例:

設定 threshold: 50、 total start cnt: 5、 total stop cnt: 50、 PSA full scale: 1/1 の場合、 threshold を超えた位置の 5 点手前から 50 点分、 下図の赤枠線部分 を積分します。 その積分値を PSA full scale 倍してリストデータの TOTAL 値とします。

図 11 TOTAL の対象範囲設定例

PSA full scale (multiple) リストデータのRISE 値、FALL 値、TOTAL 値の縮小倍率を、1/1、1/2、1/4、 1/8、1/16、1/32、1/64、1/128、1/256、1/512 から選択します。積分 値が 65535 を超える場合は縮小倍率を大きく設定します。

(2) (オプション) list-wave

list モード中に波形データをCH毎に可否を選択して付加することができます。

list-wave delay (ns)	list-wave data (digit)	list-wave compress (multiple)	list format
8 🖨	128 🖨	1/2 🗸	LIST-WAVE 🧹
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🖨	128 🖨	1/2 🗸	LIST 🗸
8 🗢	128 🖨	1/2 🗸	LIST 🗸

図 12 list-wave 関連設定

list-wave delay(digit)	list-wave または	t list-pileup モード用設定。取得波形の delay を調整します。							
	設定範囲は 8digi	t から 496digit です。1digit は波形 8 点分です。							
list-wave data(digit)	list-pileup モート	、または list-wave 用パラメータ。パイルアップ波形出力のデ							
	ータ点数を設定し	ます。 設定範囲は 8 点から 8000 点です。							
list- wave compless	list-waveフォー	マットで波形を取得する時の、波形データ圧縮を設定しま							
	す。設定範囲は 1/1 から 1/256 です。APV8108 の場合、1/1 は 1ns/								
	点 1/2は2ns	/点、1/256は256ns/点です。							
list format	list データのフォ	ーマットを設定します。							
	LIST	通常の list データフォーマット							
	LIST-WAVE	LIST の後に波形データを設定分付加します。							

(3) (オプション) list-pile up

list-pile up モード中にパイルアップを検知した場合、list データの中にパイルアップ有無の情報を含め、 list データの後にパイルアップしている波形データを付加します。

pileup wave delay		pileup judge num		pileup timing type		pileup data num	,
(digit)		(digit)				(digit))
6	÷	10	-	rise	\sim	200	÷
6	¢	10	¢	rise	\sim	200	¢

図 13 list-pile up 関連設定

双得波形の取り込み開始位置の遅延 delay を設定します。単位は digit で
す。デフォルトは5digitに設定します。設定範囲はOdigitから31digitで
f .
ペイルアップ波形の判定量を設定します。単位は digit です。 wave 波形の
禄幅にあたる縦軸(digit)と相関があります。この値が小さすぎるといとノ
イズでもパイルアップと判定する場合がありますので注意してください。
ペイルアップ波形出力の基準エッジを選択します。
se 立ち上がり
ileup パイルアップ
ペイルアップ波形出力のデータ点数を設定します。

(4) (オプション) pile ip reject

取得波形にパイルアップが含まれる場合、CH 毎の設定により、そのイベントデータを除去することが可能です。

pileup reject enable	
ON	\sim
ON	\sim

図 14 pile up reject 関連設定

pile up reject パイルアップリジェクト機能を選択します。

- ON 有効。パイルアップを含む波形で算出されたイベントデータを除去します。
- OFF 無効。パイルアップを含む波形で算出されたイベントデータでも出力します。

(5) (オプション) list-pile up

前述の pile up reject を実行するための判定条件を CH 毎に設定します。

-pileup	pileup peak ju (digit)	ıdge	pileup judge i (digit)	num	pileup interva (digit)	l num
CH1:	5	÷	15	÷	4	+
CH2 :	5	¢	15	¢	4	¢

図 15 pile up reject 関連設定

波形のピークを検出する為の設定値です。

• pileup 部

pilup peak judge(digit) pilup judge num(digit)

pileup reject enable がON の場合、パイルアップ波形の判定を調整できます。単位は digit です。wave 波形の縦軸 digit と相関があります。値が 小さすぎるといとノイズをパイルアップと判定する場合がありますので注意してください。

pilup interval num(digit)

波形の振幅データを間引きます。O の場合は間引きなし(生波形)、1 の 場合は 1 digit 飛びで波形を間引きします。threshold レベルを超えてから ピーク値検知後、threshold レベルを下回る前に、ある設定範囲内(下図 赤丸)で各点と点の差分が設定値より大きくなった場合にパイルアップと みなし、それらの波形を除去します。

5. 4. file タブ

config file status		
histogram save	list save	
histogram continuous save	list file path C:¥Data¥list.bin	>
histogram file path C:¥Data¥histo.csv	list file number file name 0 International file name	
histogram file save time(sec)		
histogram file save time(sec)		

図 17 file タブ

•file部

histogram save	計測終了時に spectrum タブに表示されているヒストグラムデータをファイル
	に保存します。ファイルの保存先は後述のフォーマットになります。 hist モー
	ド時のみ有効です。
histogram continuous save	ヒストグラムデータを設定時間間隔で連続してファイルに保存するか否かを設
	定します。 mode で hist を選択時のみ有効です。
histogram file path	ヒストグラムデータファイルの絶対パスを設定。拡張子無しも可能です。
	※注意※このファイル名で保存されるのではなく、このファイル名をもとにして以
	下のフォーマットになります。
	例:histogram file path に C:¥Data¥histogram.csv と設定し、日時が
	2010/09/01 12:00:00の場合は、C:¥ Data ¥ histogram _201009
	01_120000.csv というファイル名でデータ保存を開始します。
histogram file save time(sec)	ヒストグラムデータの連続保存の時間間隔を設定します。単位は秒です。設定
	範囲は5秒から3600秒です。
list save	リストモード時のデータをファイルに保存するか否かを設定します。
list file path	リストデータファイルの絶対パスを設定。拡張子無しも可能です。
	※注意※
	このファイル名で保存されるのではなく、このファイル名をもとにして以下の
	フォーマットになります。
	例:list file path にC:¥Data¥list_bin と設定し、後述のlist file number が
	0 の場合は、C:¥Data¥list_000000.bin というファイル名でデータ保存を
	開始します。
list file number	リストデータファイルに付加される番号の開始番号を設定します。 0 から
	999999 まで。 999999 を超えた場合 0 にリセットされます。
file name	list file path とlist file number を元に保存される時のファイル名を表示。

5. 5. status タブ

config	file status	i													
CH		-	1	ROI		الانصاص						EM UM	DAUM	E MARINA	DUCT
No.	count	rate(cps)	deadtime (%)	No.	(ch)	(ch)	(count)	(count)	(cps)	(count)	(cps)	(ch)	(%)	EVVIEN	EVVID
CH1 :	0.00	0.00	0.00	 ROI1 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
CH2 :	0.00	0.00	0.00	ROI2 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
СН3 :	0.00	0.00	0.00	ROI3 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
CH4 :	0.00	0.00	0.00	ROI4 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
CH5 :	0.00	0.00	0.00	ROIS :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
СН6 :	0.00	0.00	0.00	RO16 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
CH7 :	0.00	0.00	0.00	RO17 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
CH8 :	0.00	0.00	0.00	ROI8 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				RO19 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI10 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI11 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI12 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI13 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI14 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI15 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000
				ROI16 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000

図 18 status タブ

•CH部

CH 毎の状況を表示します。

output count	信号処理した総カウント数
output rate(cps)	1 秒間あたりの output count
deadtime(%)	デットタイム比

•ROI部

ROI間の算出結果を表示します。

peak(ch)	最大カウントのch
centroid(ch)	全カウントの総和から算出される中心値(ch)
peak(count)	最大カウント
gross(count)	ROI間のカウントの総和
gross(cps)	1 秒間当たりの gross (count)
net(count)	ROI間のバックグラウンドを差し引いたカウントの総和
net(cps)	1 秒間当たりの net(count)
FWHM(ch)	半值幅(ch)
FWHM(%)	半値幅(%)。半値幅:ROI定義エネルギー×100
FWHM	半值幅
FWTM	1/10幅

5. 6. wave タブ

図 19 wave タブ

グラフ	波形グラフ。config タブ内 mode にて wave を選択した場合、計測中に波形データ						
	を表示します。						
ON/OFF	波形表示の可否を指定します。						
СН	表示する波形のCHを選択します。						
t ype	表示する波形の種類を下記から選択します。						
	raw ADC でデジタイズされ、BLR 処理された波形						
	CFD CFD 波形整形された波形						
	Filter QDC で積分される波形						
	PTG (オプション)パイルアップしたタイミングの矩形波						
trigger edge	トリガーの極性を選択します。 通常は pos を選択してください。						
trigger SIG	トリガーとなる SIG(Signal)を選択します。 通常は SIG1 を選択してください。						
threshold	トリガーの閾値を設定します。※グラフ内のカーソルでも設定できます。						
trigger point	波形の表示開始ポイントを指定します。※グラフ内のカーソルでも設定できます。						
wave compress	X 軸の時間スケール圧縮度を、1/1、1/4、1/8、1/16、1/32、1/64、						
	1/128、1/256 から選択します。 立ち下がり時間の長い波形を表示する場合に使						
	用します。						
wave free run	チェックを外すとトリガーされた波形が表示され、チェックするとトリガーフリー						
	の波形が表示されます。ベースラインレベルやノイズレベルを見ることにも使用で						
	きます。						
accumulation	波形データ重ね合わせの有効・無効を選択します。						
continue	波形データの連続読み込み可否設定。						
Single	波形データシングル(1 回)計測実行。						
X,Y Scale	X 軸 Y 軸のスケールをボタンで調整できます。拡大は+(プラス)、縮小は-(マ						
	イナス)です。						
X axis calibration	X軸の単位を bin または ns から選択します。						
XZ · 14 ··							

Yaxis calibration Y軸の単位を bin または mV から選択します。 ※mV 表示は参考としてお使いくだ

,⊕

<m style="text-decision-color: blue;">(m)

さい。

- X軸範囲 X軸上で右クリックして自動スケールをチェックすると自動スケールになります。チ ェックを外すと自動スケールでなくなり、X軸の最小値と最大値が固定になります。 最小値または最大値を変更する場合は、マウスのポインタを変更する数値の上に置 き、クリックまたはダブルクリックすることで変更できます。
- Y軸上で右クリックして自動スケールをチェックすると自動スケールになります。チ 丫軸範囲 ェックを外すと自動スケールでなくなり、Y軸の最小値と最大値が固定になります。 最小値または最大値を変更する場合は、マウスのポインタを変更する数値の上に置 き、クリックまたはダブルクリックすることで変更できます。 +
 - カーソル移動ツールです。ROI設定の際カーソルをグラフ上で移動可能です。
 - ズーム。 クリックすると以下の 6 種類のズームイン及びズームアウトを選択し実行 できます。

図 20 グラフ ズームイン及びズームアウトツール

(1)四角形	ズームこのオプションを使用して、ズーム領域のコーナー
	とするディスプレイ上の点をクリックし、四角形がズーム
	領域を占めるまでツールをドラッグします。

- (2) X-ズーム X軸に沿ってグラフの領域にズームインします。
- (3) Y-ズーム Y軸に沿ってグラフの領域にズームインします。
- (4) フィットズーム 全ての X および Y スケールをグラフ上で自動スケールしま す。
- (5)ポイントを中心にズームアウト ズームアウトする中心点をクリックします。
- (6)ポイントを中心にズームインズームインする中心点をクリックします。
- パンツール。プロットをつかんでグラフ上を移動可能です。

5. 7. spectrum タブ

図 21 spectram タブ

グラフ	ヒストグラム	ムグラフ。config タブ内 mode にて histogram を選択した場合、				
	またはmod	e で list を選択し且つ energy spectrum ON/OFF のチェックが有				
	効の場合、言	†測中にエネルギーヒストグラムを表示します。				
凡例チェックボックス	グラフにCト	1毎のヒストグラムを表示するか否かの選択。				
ROICH	ROI (Regio	n Of Interest)を適用する CH 番号を選択します。1 つのヒスト				
	グラムに対し	→最大16つのROIを設定可能です。				
ROI start	ROIの開始	立置。単位は後述 calibration で選択した単位です。				
ROI end	ROI の終了位	立置。単位は後述 calibration で選択した単位です。				
energy	ピーク位置の	ch)のエネルギー値の定義。 ⁶⁰ Co の場合、1173 や 1332(keV)				
	と設定。後辺	to calibration にて ch を選択した場合、ROI 間のピークを検出し				
	そのピーク位置(ch)と設定したエネルギー値から keV/ch を算出し、半値幅の					
	算出結果に通	通用します。				
calibration	X軸の単位。	設定に伴いX軸のラベルも変更されます				
	ch	ch(チャネル)単位表示。ROIの FWTM の FWHM などの単位				
		は任意になります。				
	eV	eV単位表示。1つのヒストグラムにおける2種類のピーク(中心				
		値)とエネルギー値の2点校正により、chがeVになるように1				
		次関数y=ax+bの傾きaと切片bを算出しX軸に設定します。ROI				
		のFWTM のFWHM などの単位は eV になります。				
	keV	keV 単位表示。1 つのヒストグラムにおける2 種類のピーク(中				
		心値)とエネルギー値の2点校正により、chがkeVになるよう				
		に 1 次関数 y=ax+b の傾き a と切片 b を算出し X 軸に設定しま				
		す。 ROI の FWTM の FWHM などの単位は keV になります。				
		例:5717.9chに ⁶⁰ Coの1173.24keV、6498.7chに ⁶⁰ Co				
		の1332.5keVがある場合、2点校正よりaを0.20397、bを				
		6.958297 と自動算出します。				

	manual	1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任意に設定し
		X軸に設定します。単位は任意に設定します。
Y mapping	グラフのY	軸のマッピングを選択します。 設定に伴い Y 軸のラベルも変更され
	ます。	
	linear 直線	₹
	log 対数	Q
smoothing	統計が少ない	い場合に半値幅を計算するためのスムージング機能です。

5.8. time spectrum タブ

図 22 time spectram タブ

timespectrum 表示に関する設定です。ボード内の計測に限ります。

※list モードにて取得したリストデータをもとに timespectrum を生成します。

グラフ	時間差スペクトル。config タブ内 mode にて list を選択し、timespectrum ON/OFF
	をチェックした場合、計測中に時間差スペクトルを表示します。

- R例チェック スペクトル表示の有無を選択します。
- ・Config 部 時間スペクトルの設定です。

start CH スタートタイミングを取得する CH 番号を選択します。

sotp CH ストップイミングを取得する CH 番号を選択します。

gain1 倍から 128 倍まで選択できます。1 倍の時、フルスケール約 781ns (1digt あたり
約 3.9ps)、128 倍時フルスケールは約 100 µs (1digit あたり 0.5ns)です。

- coinc offset timespectrum の X 軸オフセットを設定します。設定範囲は 0.008ns から 100,000ns です。
- coinc time コインシデンスタイムを設定します。前述の start CH と stop CH におけるイベント検出の時間差が、この設定範囲内の場合、コインシデンス(同時)とみなし、有効データとします。設定範囲は最大 500,000ns です。

•ROI部

- ROISTART ROIのスタートチャネル
- ROI END ROI のエンドチャネル
- FWHM 計算された半値幅が表示されます。
- FWTM 計算された全値幅が表示されます。
- •Xscale 部 X軸の単位をchまたはnsから選択します。

5.9. PSD タブ

図 23 PSD タブ

PSD 表示に関する設定です。

※list モードにて取得したリストデータをもとに PSD グラフと cursor area グラフを生成します。

PSD グラフ	リストデータ内の値	を用いた2次元ヒストグラムです。X軸とY軸にそれぞれ任意にデ
	ータの種類を選択し	ておき、X軸とY軸の交点に頻度を積算していきます。
	※注意※	
	X軸とY軸のチャ	▽ネル数は 16384 チャネルありますが、この場合約 537MB
	(16384×16384	4×2Byte(counts))ものメモリが必要となるため、実際は後述
	の compress の設定	こにより圧縮しています。
PSD axis type	PSDグラフのX軸は	ヒY軸に割り当てるリストデータ内の項目を選択します。X軸はx1
	とx2の組み合わせれ	からx1/x2とします。Y軸はy1とy2の組み合わせからy1/y2と
	します。選択項目は	、TOTAL、FALL、RISE、QDC、1 です。
magnification	PSD グラフの X 軸	と Y 軸の値に対し設定値を積算します。 例えば X 軸のこの設定を
	1000とし ×1 に	FALL、x2 に RISE と選択した場合、X 軸は FALL/RISE になり
	ますが、その商が 1.	234 の場合、1000 倍して 1234 となります。
compress	PSD グラフの圧縮	率を以下の項目より選択します。分割数とその場合のメモリ使用量
	を記載します。尚、	PC の状態により、メモリを多く使用する項目を選択するとエラー
	メッセージが表示さ	れ、使用できない場合があります。
	1 (16384)	使用不可。16384×16384。約537MB
	1/2 (8192)	16384 チャネルの 1/2。8192×8192。約 135MB
	1/4 (4096)	16384 チャネルの 1/4。4096×4096。約34MB
	1/8 (2048)	16384 チャネルの 1/8。2048×2048。約8.4MB
	1/16 (1024)	16384 チャネルの 1/16。1024×1024。約2.1MB
	1/32 (512)	16384 チャネルの 1/32。512×512。約0.52MB
	1/64 (256)	16384 チャネルの 1/64。256×256。約0.13MB
	1/128 (128)	16384 チャネルの 1/128。128×128。約0.03MB

cursor area グラフ PSD グラフ内カーソルにて指定した範囲内のデータを抽出し、X軸方向から見た場合の

1 次元ヒストグラムです。

cursor cursor area グラフ用データを抽出するために、PSD グラフ内でこのカーソルにて範囲を設定します。設定を変更すると PSD 内カーソルに反映され、その四方で囲まれた範囲のデータをX軸方向から見た 1 次元ヒストグラムを cursor グラフに表示します。

6. 計測

例として、LaBr₃(Ce)検出器(以下検出器)を使用した際の、エネルギースペクトル計測、リスト計測、PSD 計測、時間スペクトル計測の操作手順を記載します。

6.1. ヒストグラムモード

6.1.1. 環境

6.1.2. 電源と接続

- (1) 全ての機器 (VME ラック、HV (高圧電源)、PC) がOFF であることを確認します。
- (2) 検出器とHV をSHV コネクタのケーブルで接続します。
- (3) 検出器からのアノード出力信号を APV8108 の CH1 に LEMO コネクタ同軸ケーブルで接続します。 BNC コネクタの場合は、 BNC-LEMO 変換アダプタをご使用ください。
- (4) APV8108とPCをLANケーブルで接続します。
- (5) PC の電源をON にします。本アプリを起動します。
- (6) VME ラックの電源をON にします。
- (7) 高圧電源をONにし、検出器に応じた電圧を印かします。
- (8) この例では¹³⁷Cs線源を使用しています
- 6.1.3. アプリケーション起動及び設定
- (1) デスクトップ上ショートカットアイコン APV8108 をダブルクリックして本アプリを起動しま す。起動直後、本アプリと本機器のネットワーク接続が実行されます。その際に接続エラーが発 生する場合は、後述のトラブルシューティングを参照してください。
- (2) メニュー Config をクリックして全設定を本機器へ送信します。実行後、DPP 内ヒストグラムデ ータが初期化されます。

6.1.4. 波形確認

まず波形モードにて入力されている検出器からの信号を確認します。

(1) config タブにて以下の設定をした後、メニュー Config をクリックします。

device	Dev1	L 、	/	IP add	ress	192.1	168.10.1	28		nemo									mo	de v	vave	\sim	mea time	surei (sec)	ment 48	:00:0	0 🗢	m	easun ode	ment real t	ime 🗸	list read byte(byte) 16000	-	acq.
mode	wa	ve		measure mode	ement	^t rea	al time		m tir	easure me	ment	48:	00	:00	real time	00	:00:	00		live	time 00	:00:	:00		file size(Byte)		0	samp	ling 1G			error
config	fi	le s	status																															
		DPP	OP	TION																														
CH					sign	al		basel	ine					CFD	CFD		CFD)			QDC	QD	c	Q	DC	Q	с	QDC		QDC				
enable			signal t	ype	dela (ns)	iy)	polarity	resto filter(rer µs)	(digit		timing type		function (multiple)	delay (ns)		wall (dig	c it)	QDC sum/p	peak	pretrigge (ns)	er filte (ns	er 5)	ra	ntegral ange(ns)	ful (m	l scale ultiple)	LLD (digi	t)	ULD (digit)				
CH1	:	[nomal s	ig 🗸	0	-	neg 🗸	4μ	\sim	50	¢	CFD	\sim	x0.21 🗸	10ns	\sim	20	¢	sum	\sim	-8ns 🗸	10	ns 🔨	/ 1	112 🖨	1/	1 🗸	10	-	8000 😂				
CH2	:	[nomal s	ig 🗸	0	÷	neg 🗸	4μ	\sim	50	¢	CFD	\sim	x0.21 🔍	10ns	\sim	20	¢	sum	\sim	-8ns 🗸	10	ns 🔨	/ 1	112 🗎	1/	1 🗸	10	¢	8000 🗢				
CH3	:	[nomal s	ig 🗸	0	l\$	neg 🗸	4μ	\sim	50	¢	CFD	\sim	x0.21 🔍	10ns	\sim	20	¢	sum	\sim	-8ns 🗸	10	ns 🔨	/ 1	112 😂	1/	1 🗸	10	¢	8000 🗢				
CH4	:	[nomal s	ig 🗸	0	¢	neg 🧹	4μ	\sim	50	¢	CFD	\sim	x0.21 🔍	10ns	\sim	20	\$	sum	\sim	-8ns 🔍	10	ns 🔨	/ 1	112 🗘	1/	1 🗸	10	-	8000 🗢				
CH5	-		nomal s	ig 🗸	0	-	neg 🧹	4μ	\sim	50	¢	CFD	\sim	x0.21 🔍	10ns	\sim	20	¢	sum	\sim	-8ns 👡	10	ns 🔍	/ 1	112 🔤	1/	1 🗸	10	¢	8000 🗢				
CH6	:		nomal s	ig 🗸	0	-	neg 🧹	4μ	\sim	50	÷.	CFD	\sim	x0.21 🔍	10ns	\sim	20	¢	sum	\sim	-8ns 🔍	10	ns 🔍	/ 1	112 🗘	1/	1 🗸	10	¢	8000 🗢				
CH7	:		nomal s	ig 🗸	0	-	neg 🧹	4μ	\sim	50	÷	CFD	\sim	x0.21 🗸	10ns	\sim	20	¢	sum	\sim	-8ns 🔍	10	ns 🔨	/ 1	112 🗘	1/	1 🗸	10	 	8000 🗢				
CHB	1 :		nomal s	ig 🗸	0	I\$	neg 🗸	4μ	\sim	50	÷	CFD	\sim	x0.21 🗸	10ns	\sim	20	¢	sum	\sim	-8ns 🗸	10	ns 🔨	/ 1	112	1/	1 🗸	10		8000 🗢				

図25 波形計測設定

wave タブを開き、下図の設定を確認した後、メニュー Clear → Start の順にクリックします。グラフ に検出器からの波形が確認できます。

図26 波形計測画面

以下の点を注意します。

 ・ 波形が表示されない場合、トリガーがかかっていない場合があります。まずベースラインを確認する
 ために、wave タブ内 wave free run にチェックを入れて、メニュー Config → Clear → Start
 を実行します。ベースラインと大まかにどのくらいの波高の信号がきているかを確認できます。

図27 ベースライン確認中

次に wave free run のチェックを外し、threshold を 10 くらいから徐々に上げていき、前ページの ように波形がしっかり捉えられる、threshold 値を控えておきます。この控えをこの後の設定にも使 用します。

・ 波形の波高が大きすぎてサチレーション(飽和)していないかを確認します。波高が大きい場合は、 analog gain を×1 にするか、印加高圧を下げるなどして、本機器への入力信号の振幅を下げます。

6.1.5. 計測開始

config タブにて以下の設定をした後、メニュー Config をクリックします。波形計測にて控えておいた threshold 値を、config タブ内 threshold に設定します。

device [Dev1	~	/ IF	P add	ress 1	192.	168.10.1	28		memo										mode	wa	ave 📐	/ m	easu ne(se	rement sc)	48:00	:00	\$	me mo	asun de	ment real time	\sim	list by	t read yte(byte) 16000	-	acq.
mode	wav	<i>i</i> e	me	asure ode	ment	rea	al time		m ti	neasur me	emen	48	:00	:00	rea	al time	00	:00:	00	live	e tii	me 00:	0:00	0	file si	ze(By	te)			0	sampling	1G					error
config	file	e s	tatus																																		
		DPP	OPTIC	DN																																	
CIL					signa			base	eline					CFD	c	CFD		CFD	,			QDC	QDC		QDC		QDC		QDC		QDC						
enable			signal type	e	delay (ns)	,	polarity	resto filter	orer r(µs)	thres (digi	shold t)	timing type		function (multiple	d) (delay (ns)		walk (dig	: it)	QDC sum/peal	k	pretrigger (ns)	filter (ns)		integral range(r	15) (ull sca multip	ale ble)	LLD (digit)		ULD (digit)						
CH1	:	[nomal sig	\sim	0	\$	neg 🗸	4μ	~	50	\$	CFD	\sim	x0.21	, 1	.Ons	\sim	20	¢	sum 🗸	,	-8ns 🧹	10ns	\sim	112	I\$	1/1	\sim	10	¢	8000 🗢						
CH2	:	[nomal sig	\sim	0	-	neg 🗸	4μ	\sim	50	\$	CFD	\sim	x0.21	- 1	0ns	\sim	20	¢	sum 🗸	,	-8ns 🧹	10ns	\sim	112	I\$	1/1	\sim	10	I\$	8000 🗢						
CH3	:	[nomal sig	\sim	0	\$	neg 🧹	4μ	\sim	50	\$	CFD	\sim	x0.21	- 1	0ns	\sim	20	\$	sum 🗸	~	-8ns 🗸	10ns	\sim	112	 	1/1	\sim	10	¢.	8000 🗢						
CH4	:	[nomal sig	\sim	0	¢	neg 🧹	4μ	\sim	50	\$	CFD	\sim	x0.21	- 1	0ns	\sim	20	¢	sum 🗸	~	-8ns 🗸	10ns	\sim	112)\$	1/1	\sim	10	¢.	8000						
CH5	-	[nomal sig	\sim	0	¢	neg 🧹	4μ	\sim	50	٩	CFD	\sim	x0.21	, 1	0ns	\sim	20	¢	sum 🔍	/	-8ns 🗸	10ns	\sim	112	\$	1/1	\sim	10	¢	8000						
CH6	-	[nomal sig	\sim	0	¢	neg 🗸	4μ	\sim	50	4	CFD	\sim	x0.21	, 1	.0ns	\sim	20	¢	sum 🔍	/	-8ns 🗸	10ns	\sim	112	\$	1/1	\sim	10	¢	8000						
CH7	:	[nomal sig	\sim	0	I\$	neg 🗸	4μ	\sim	50	4	CFD	\sim	x0.21 ,	, 1	0ns	\sim	20	¢	sum 🗸	-	-8ns 🗸	10ns	\sim	112	I\$	1/1	\sim	10	+	8000						
CH8	:	[nomal sig	\sim	0		neg 🗸	4μ	\sim	50	-	CFD	\sim	x0.21	- 1	.0ns	\sim	20	¢	sum 🗸	,	-8ns 🗸	10ns	\sim	112	H)	1/1	\sim	10	 	8000 🗢						

図28 Config タブ内 threshold 設定

spectrum タブを開き、下図の設定を確認した後、メニュー Clear → Start の順にクリックします。実 行後、下図のようなスペクトルが表示されます。

図29 ヒストグラムモード計測中

- ・ CH部にCH毎の計測状況が表示されます。
- acq LED が点滅します。
- measurement time に計測設定時間が表示されます。
- real time に本機器から取得した経過時間が表示されます。
- mode に hist と表示されます。
- ROI 部に ROI 毎の計算結果が表示されます。
- spectrum on/off の CH1 をチェックし、spectrum タブにヒストグラムが表示されます。

6.1.6. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

6.2. リストモード

6.2.1. 準備

前章 6. 1. ヒストグラムモード の 6. 1. 1. 環境 から 6. 1. 5. 計測開始 まで、同様の準備 を行います。

6.2.2. エネルギースペクトルの確認

ヒストグラムモードにて下記の点を注意します。

- output rate(cps)は1秒間に所得するイベント数であり、想定に対して低過ぎたり、高過ぎたりしていないか下図の①を確認します。
- spectrum タブのグラフにてスペクトルの形状に異常はないか、特にノイズデータを過剰に取得していないか下図の②を確認します。

	\sim	IP address	192.168.10.128	memo					mode	e hist	 time((sec) 00	:02:00	mea	surment le	real time	∠ list r	ead (byte) 10000	
hist	t	measuremer mode	" real time	measurement time	^t 00:02:	00	real time	00:02:0	0	ive time 00:	02:00	file size(Byte)		0 9	ampling 1	G		
file	e status	advanced	adjust debug	contra															
	- 1)																	
	output	output	deadtime			ROI	peak	centroid	peak	gross	gross	net	net	FWHM	FWHM	FWHM	FWTM		
	count	rate(cps)	(%)			No.	(ch)	(ch)	(count)	(count)	(cps)	(count)	(cps)	(ch)	(%)	(keV)	(keV)		
	1.23M	10.27k	0.41			ROI1 : 2	2194	2191.99	4.414k	362.982k	3.025k	347.208k	2.893k	74.3	3.388	22.430	39.981		
1 :	0.00	0.00	100.00			ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
4 :	0.00	0.00	0.00			ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
5 :	0.00	0.00	0.00			ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
ā :	0.00	0.00	0.00			ROIG :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
7 :	0.00	0.00	0.00			RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
3 :	0.00	0.00	0.00			ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
) :	0.00	0.00	0.00			ROI9 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
10 :	0.00	0.00	0.00			ROI10 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
11:	0.00	0.00	0.00			ROI11 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
12:	0.00	0.00	0.00			ROI12 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
13 - 14 -	0.00	0.00	0.00			ROI13 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
15 :	0.00	0.00	0.00			ROI14 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
16 :	0.00	0.00	0.00			ROI15 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
5000													spectrum on	/off	ROI	ROI	ROI start	ROI end energy	
4750 -													СН1	\sim		CH CH1	(ch)	(ch) (keV)	
4500 -	1											1i	CH2	~	1	CH2	2080	2300 062 0	
4250-	1														2		• •	8190 4 662 4	
4000 -	1		1										CH3	× 1	2	CH3			
3750 -	1		· · · · · · · · · · · · · · · · · · ·										СН3 СН4		3	CH3 V CH4 V	0 14	8190 🗢 662 🗢	
3500 -													СН3 СН4 СН5		3 4 5	CH3 CH4 CH5	0 4	8190 \$ 662 \$ 8190 \$ 662 \$	
													CH3 CH4 CH5 CH5		3 4 5 6	CH3 CH4 CH5 CH6		8190 \$\$\phi\$ \$662 \$\$\phi\$ 8190 \$\$\phi\$ \$662 \$\$\phi\$ 8190 \$\$\phi\$ \$662 \$\$\phi\$ 8190 \$\$\phi\$ \$662 \$\$\phi\$	
3250 -	ł												СН3 СН4 СН5 СН6 СН7		3 4 5 6 7	CH3 > CH4 > CH5 > CH6 > CH7 >		8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦	
3250 - 3000 -													CH3 CH4 CH5 CH6 CH7 CH7		3 4 5 6 7 8	CH3 > CH4 > CH5 > CH6 > CH7 > CH8 >		8190 \$\Phi\$ 662 \$\Phi\$	
3250 - 3000 - 2750 -													CH3 CH4 CH5 CH6 CH6 CH7 CH8 CH8		3 4 5 7 8 9	CH3 > CH4 > CH5 > CH6 > CH7 > CH8 > none >	0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$	8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦ 8190 ♦ 662 ♦	
3250													CH3 CH4 CH5 CH6 CH7 CH7 CH8 CH9 CH9		3 4 5 7 8 9 10	CH3 > CH4 > CH5 > CH6 > CH7 > CH8 > none >	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0	
3250 - 3000 - 2750 - 2500 - 2250 -													CH3 CH4 CH5 CH5 CH6 CH7 CH8 CH9 CH10 CH11		3 4 5 7 8 9 10 11	CH3 CH4 CH5 CH5 CH5 CH6 CH7 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH9 CH4 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0 8190 662 0	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 -													CH3 CH4 CH5 CH6 CH7 CH7 CH8 CH9 CH10 CH11 CH11		3 4 5 7 8 9 10 11 12	CH3 CH4 CH5 CH5 CH6 CH7 CH7 CH8 none none none Non	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4 190 6 6 4	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1500 -													CH3 CH4 CH5 CH5 CH7 CH8 CH9 CH10 CH11 CH12 CH13		3 4 5 7 8 9 10 11 12 13	CH3 > CH4 > CH5 > CH5 > CH5 > CH6 > CH7 > CH8 > CH7 > CH8 > none > none > none > none >	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bis Constraint Bis Constraint Constraint	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1500 - 1250 -													CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH11 CH12 CH13 CH14		3 4 5 7 8 9 10 11 12 13 14	CH3 CH4 CH5 CH5 CH6 CH7 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH7 CH8 CH9		300 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40 8190 40 66.2 40	
3250 - 3000 - 2750 - 2500 - 2000 - 1750 - 1250 - 1250 - 1000 -													CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH12 CH13 CH14 CH15		3 4 5 6 7 8 9 10 11 12 13 14 15	CH3 V CH4 V CH5 V CH5 V CH6 V CH7 V CH8 V CH8 V CH8 V CH8 V CH8 V CH7 V CH8 V CH9 V		Bigs Constraints Constraints <thc< td=""></thc<>	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1250 - 1000 - 750 -													CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH12 CH13 CH14 CH15 CH16		3 4 5 6 7 8 9 10 11 12 13 14 15 16	CH3 V CH4 V CH5 V CH5 V CH6 V CH7 V CH8 V CH8 V CH7 V CH8 V CH8 V CH7 V CH8 V CH7 V CH8 V CH7 V CH8 V CH7 V CH8 V CH7 V CH6 V CH7 V CH5 V CH6 V CH7 V CH5 V CH6 V CH7 V CH6 V CH7 V CH8 V CH5 V CH6 V CH7 V CH8 V CH7 V CH7 V CH8 V CH7 V	0 4 0 4	30 4 52 4 8190 4 62 </td	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1500 - 1000 - 750 - 500 -													CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH10 CH11 CH12 CH12 CH13 CH14 CH15 CH16		3 4 5 6 7 8 9 10 11 12 13 14 15 16	CH3 ↓ CH4 ↓ CH5 ↓ CH5 ↓ CH6 ↓ CH7 ↓ CH7 ↓ CH7 ↓ CH7 ↓ CH7 ↓ CH7 ↓ CH8 ↓ CH7 ↓ CH8 ↓ CH8 ↓ CH8 ↓ CH9 ↓		8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 66.2 4 8190 4 62.2 4 8190 4 62.2 4	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1250 - 1250 - 1000 - 750 - 500 - 250 -			2										CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16		3 4 5 7 8 9 10 11 12 13 14 15 16	CH3 ↓ CH4 ↓ CH5 ↓ CH5 ↓ CH6 ↓ CH7 ↓ CH7 ↓ CH8 ↓ none ↓ n		8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 622 4	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1500 - 1000 - 750 - 500 - 250 - 200 - 1000 - 10			J										CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH12 CH14 CH15 CH16 Y mapp		3 4 5 7 8 9 10 11 12 13 14 15 16	CH3 V CH4 V CH5 V CH5 V CH5 V CH6 V CH7 V CH8 V CH8 V CH8 V CH8 V None V No None V No	0 0 0 0	100 100 <th 100<="" td="" th<=""></th>	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1750 - 1500 - 1250 - 1000 - 750 - 200 - 1250 - 1000 - 1250 - 1000 - 1250 -	76-13	250	500 750	1000	1 125 keV	0	1500	1/5	20	2000	2250	2473.7	CH3 CH4 CH5 CH5 CH7 CH8 CH7 CH8 CH10 CH11 CH12 CH12 CH12 CH13 CH14 CH15 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16		3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 8 0 8 0 8 0 8 0 8 0 0 8 0 10 11 12 13 14 15 16 10 10 11 12 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	CH3 V CH4 V CH5 V CH5 V CH5 V CH5 CH5 CH5 CH6 V none V Non	0 0 0 0	8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 662 4 8190 4 622 4 8190 4 622 4 8190 6	
3250 - 3000 - 2750 - 2500 - 2250 - 2000 - 1500 - 1500 - 1500 - 750 - 500 - 250 0 - 1.1389/ 2	7E-13	250	50 750	ino	1251 1251 keV	0	1500	179	0	2000	2250	2473.7	CH3 CH4 CH4 CH5 CH5 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH14 CH15 CH16 Y mapp S O log Calcular	ing east isothing to a string	3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cal 8 0 R 0 0 R 0 0 7	CH3 V CH4 V CH5 V CH5 V CH7 V CH6 V CH7 CH8 V none	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 6 2 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 6 4 13190 4 5	

図30 list モード計測前注意点

- 6.2.3. 設定
- (1) config タブにて mode を list に設定します。
- (2) リストデータを保存する場合は、file タブ内の以下の各項目を設定します。

list save	チェック
list save	チェック

list file path 基準となるファイルパス

list file number 0から999999 までで任意。重複しないように注意してください。

config file status	
file histogram save histogram continuous save	list save ✓ list file path C:¥Data¥list.bin
histogram file path C:¥Data¥histo.csv histogram file save time(sec)	list file number file name 1 Ist000001.bin
3600	

図31 file タブ内リストデータ保存関連設定

6.2.4. 計測開始

メニュー Config \rightarrow Clear \rightarrow Start の順にクリックします。実行後、イベントを検知しリストデータを 取得すると、下図赤枠の file size(Byte)が増加します。

device	Dev1	\sim	IP address 192.168.10.128	memo			mode list	 measure time(sec 	ment 00:00:05	٢	measurmen mode	nt 🛛 real time 🗸	list read byte(byte) 10000	\$	acq.
mode	list		measurement mode real time	measurement time	00:00:05	real time 00:00:05	live time	00:00:05	file size(Byte)		4.41M	sampling 1G			error
config	file	status													

図32 list データ計測・保存中画面

6.2.5. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

6.3.時間スペクトル計測

6.3.1. 環境

図33 計測環境

- 6.3.2. 電源と接続
- (1) 全ての機器 (VME ラック、HV (高圧電源)、PC) が OFF であることを確認します。
- (2) 検出器とHVをSHVコネクタのケーブルで接続します。
- (3) 検出器からのアノード出力信号を APV8108 の CH1 と CH2 に LEMO コネクタ同軸ケーブル で接続します。 BNC コネクタの場合は、 BNC-LEMO 変換アダプタをご使用ください。
- (4) APV8108とPCをLANケーブルで接続します。
- (5) PCの電源をONにします。本アプリを起動します。
- (6) VME ラックの電源をON にします。
- (7) 高圧電源をONにし、検出器に応じた電圧を印加します。
- (8) この例では²²Na 線源を使用しています
- 6.3.3. 準備

前章6.1.ヒストグラムモードの6.1.4.波形確認、同様の準備を行います。

6.3.4. エネルギースペクトルの確認

検出器の状態を確認しつつ、時間計測対象エネルギーの範囲指定を行います。

まず、以下の設定にてエネルギースペクトル計測を行います。config タブにて以下の設定をした後、メニ ュー Config をクリックします。

APV81	08-8	3516 Ve	ersion 1.0	0.2																																-	×
File Edit	ca	alibratic	on (Con	fig	Clea	ar Start	Sto	р																												
device C mode [ev1	~	IP a meas mod	addn surei le	ess 1	192.: rea	168.10.1 al time	28	n	memo neasu me	remen	^t 10):00	:00	real time	00	:00	:00	m	ode list live time	• 00	.00:	measu time(s	reme ec) fi	ent 10:00 ile size(By):00 te)	¢	m	easun ode 0	ment	real time	500	lie b DM	st read yte(by	te) 1600	0 🗢	acq. error
config	file	e stati	us																																		
		DPP	OPTION	4																																	
CH enable		sig	inal type		signal delay (ns)	l r	polarity	basel resto filter(ine rer (µs)	thre (dig	shold it)	timin; type	9	CFD function (multiple)	CFD d 1G / 5 (ns)	lelay 00M		CFD walk (digit	,	QDC sum/peal	QDC preti	igger	QDC filter (ns)		QDC integral range(ns)	QDC full sca (multip	(e L le) ((DC LD digit)		QDC ULD (digit)						
CH1	:	no	mal sig ,	~	0	¢	neg 🗸	129µ	\sim	50	4	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20	¢	sum 🗸	-8ns	~	10ns	\sim	128	¢	1/4	\sim	30	٥	8000 🗢						
CH2	:	no	mal sig ,	~	0	-	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🗸	5ns / 1	0ns	\sim	20		sum 🗸	-8ns	· ~	10ns	\sim	128	\$-	1/4	~	30	\$	8000 🗢						
CH3	:	no	mal sig ,	~	0	 	neg 🗸	129µ	\sim	50	-	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20		sum 🗸	-8ns	· ~	10ns	\sim	128	¢I	1/4	\sim	30		8000 🗢						
CH4	:	no	mal sig ,	~	0	-	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🔍	5ns / 1	Ons	\sim	20		sum 🗸	-8ns	~	10ns	\sim	128	¢	1/4	~	30	\$	8000 🗢						
CH5	:	no	mal sig ,	~	0	I\$	neg 🗸	129µ	\sim	50	-	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20	¢	sum 🗸	-8ns	i 🗸	10ns	\sim	128	\$-	1/4	~	30	\$	8000 🗢						
CH6	:	no	mal sig ,	~	0	4	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20		sum 🗸	-8ns	~	10ns	\sim	128	¢	1/4	~	30	۰	8000 🗢						
CH7	:	no	mal sig ,	~	0	 	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🗸	5ns / 1	0ns	\sim	20	 	sum 🗸	-8ns	· ~	10ns	\sim	128	\$	1/4	~	30	\$	8000 🗢						
CH8	:	no	mal sig ,	~	0	4	neg 🗸	129µ	\sim	50	¢	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20		sum 🗸	-8ns	· ~	10ns	\sim	128	¢I	1/4	~	30	٠	8000 🗢						
CH9	:	no	mal sig ,	~	0	4	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🗸	5ns / 1	Ons	\sim	20	¢	sum 🗸	-8ns	~	10ns	\sim	128	\$I	1/4	~	30	\$	8000 🗢						
CH10	:	no	mal sig ,	~	0	 	neg 🗸	129µ	\sim	50	-	CFD	\sim	x0.21 🤍	5ns / 1	0ns	\sim	20	¢	sum 🗸	-8ns	· ~	10ns	\sim	128	\$I	1/4	\sim	30	\$	8000 🗢						
CH11	:	no	mal sig ,	~	0	4	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🤍	5ns / 1	.0ns	\sim	20		sum 🗸	-8nt	~	10ns	\sim	128	¢	1/4	~	30	\$	8000 🗢						
CH12	:	no	mal sig ,	~	0	-	neg 🗸	129µ	\sim	50	\$	CFD	\sim	x0.21 🗸	5ns / 1	.Ons	\sim	20	¢	sum 🗸	-8ns	· ~	10ns	\sim	128	\$	1/4	~	30	\$	8000 🗢						
CH13	:	no	mal sig ,	~	0	4	neg 🗸	129µ	~	50	\$	CFD	\sim	x0.21 🗸	5ns / 1	0ns	\sim	20		sum 🗸	-8ns	• •	10ns	\sim	128	¢	1/4	~	30	٥	8000 🗢						
CH14	:	no	mal sig ,	~	0	-	neg 🗸	129µ	~	50	-	CFD	\sim	x0.21 🗸	5ns / 1	Ons	\sim	20	\$	sum 🗸	-8ns	· ~	10ns	\sim	128	¢	1/4	~	30	\$	8000 🗢						
CH15	:	no	mal sig ,	~	0	4	neg 🗸	129µ	~	50	4	CFD	\sim	x0.21 🤍	5ns / 1	.0ns	\sim	20	¢	sum 🗸	-8ns		10ns	\sim	128	¢I	1/4	~	30	٥	8000 🗢		ene	irgy sp	ectrum (ON/OFF	
CH16	: [no	mal sig ,	~	0	 	neg 🗸	129µ	\sim	50	¢	CFD	\vee	x0.21 🤍	5ns / 1	0ns	\sim	20	¢	sum 🗸	-8ns	~	10ns	~	128	\$ -	1/4	~	30	\$	8000 🗢		time	e spect	rum ON/	OFF	

図34 時間スペクトル計測前エネルギースペクトル計測設定(エネルギー全範囲)

spectrum タブを開き、メニュー Clear → Start の順にクリックします。実行後以下のようなスペクト ルが表示されます。スペクトルの形状や計数を確認しつつ、ROI start と ROI end を使ってピーク範囲の 目安を設定します。

図35 時間スペクトル計測前エネルギースペクトル計測(エネルギー全範囲)

次に、時間計測の対象となるエネルギー(この例の場合は²²Naの511keVピーク)を絞り込む為に、以下の設定をします。前ページの ROI start と ROI end にて目安を付けた値を、下図赤色枠の config タブ 内 QDC LLD に対して ROI start を、QDC ULD に対して ROI end を設定します。

¢	config	file	e :	status																																
			DPP	OP	TION																															
	CH enable			signal t	/pe	sigi del (ns	nal ay ;)	polari	ity	baseli restor filter(j	ne rer µs)	thres (digi	shold t)	timing type	,	CFD functio (multip	on ble)	CFD delay (ns)		CFD walk (dig	it)	QDC sum/p	eak	QDC pretrig (ns)	ger	QDC filter (ns)		QDC integra range(ıl ns)	QDC full s (mul	; cale tiple)	QDC LLD (digit)	QDC ULD (digit	: t)	
	CH1	:		nomal s	g 🗸	0	-	neg	\sim	4µ	\sim	50	+	CFD	\sim	×0.21	\sim	10ns	\sim	20	 	sum	\sim	-8ns	\sim	10ns	\sim	144	 	1/1	\sim	1700	 	1950	 	
	CH2	:		nomal s	g 🗸	0	 	neg	\sim	4µ	\sim	50	+	CFD	\sim	×0.21	\sim	10ns	\sim	20	+	sum	\sim	-8ns	\sim	10ns	\sim	144	+	1/1	\sim	1750	 	2000	 	
	CH3	:		nomal c	-					A.,		-		CED		UN 71		10ec		20				-0		1000		***		1/1		10		0000		

図36 時間スペクトル計測前エネルギースペクトル計測(エネルギー範囲絞り込み設定)

spectrum タブを開き、メニュー Clear → Start の順にクリックします。実行後、QDC LLD と QDC ULD の範囲にて絞り込まれた下図のようなエネルギーピークが表示されます。

6.3.5. 設定

(1) config タブにて

mode list

timespectrum ON/OFF チェック

(2) メニュー Config をクリックします。
 ※ このモードにて高計数で計測を行うと、パソコンに計算の負荷がかかり、挙動が不安定になる場合がありますのでご注意ください。

device	Dev1	\sim	· II	P add	ress]	192.:	168.10.1	28		memo									mod	e lis	st	~	_ n	easu ne(s	rement ec)	48:0	0:00	¢	me	asum de	nent [real time	• ~]	list rea byte(b	d oyte) 16	000	\$	acq.
mode	list		m	easure ode	ement	rea	al time		n ti	neasur ime	ement	48:0	0:00	n	eal time	00:	:00:0	00		live t	ime ()0:0	0:0	0	file s	ize(B	/te)			0	s	ampling	• 1G						error
config	fil	le st	tatus																																				
		DPP	OPTI	ON																																			
CH enabl	•		signal typ	e	signa delay (ns)	1	polarity	base resto filter	line orer (µs)	thres (digi	shold t)	timing type	CFD functio (multip	n de)	CFD delay (ns)		CFD walk (digit	:)	QDC sum/p	eak	QDC pretrig (ns)	gger	QDC filter (ns)		QDC integra range(il ins)	QDC full sci (multij	ale ole)	QDC LLD (digit)		QDC ULD (digit)							
CH1	:		nomal sig	\sim	0	\$	neg 🗸	4μ	\sim	50	¢	CFD 🗸	×0.21	\sim	10ns	\sim	20	¢	sum	\sim	-8ns	\sim	10ns	\sim	144	¢	1/1	\sim	1700	÷	1950	¢.							
CH2	÷	1	nomal sig	\sim	0		neg 🗸	4μ	~	50	+	CFD 🗸	x0.21	\sim	10ns	\sim	20	 	sum	\sim	-8ns	\sim	10ns	\sim	144	+	1/1	\sim	1750	+	2000	+							
CH4			nomal sig	~	0		neg 🗸	4µ 4	~	50	1	CFD CFD	x0.21	\sim	10ns	~	20		sum	\sim	-8ns	~	10ns	\sim	144		1/1	\sim	10		8000								
CH5	:	÷	nomal sig	~	0		neg 🗸	4υ	~	50		CFD U	x0.21	~	10ns	~	20		sum	\sim	-8ns	~	10ns	~	144		1/1	~	10		8000								
CH6	:		nomal sig	V	0	1	neg 🗸	4μ	~	50	÷.	CFD V	x0.21	v	10ns	v	20	-	sum	v	-8ns	v	10ns	v	144	1÷1	1/1	v	10	1¢1	8000	÷							
CH7	:		nomal sig	\sim	0	I\$	neg 🗸	4μ	\sim	50	\$	CFD 🗸	x0.21	\sim	10ns	\sim	20	¢	sum	\sim	-8ns	\sim	10ns	\sim	144	¢	1/1	\sim	10	÷	8000	 							
CH8	:	r	nomal sig	\sim	0	 	neg 🗸	4μ	\sim	50	¢	CFD 🗸	×0.21	\sim	10ns	\sim	20	¢	sum	\sim	-8ns	\sim	10ns	\sim	144	¢	1/1	\sim	10	 	8000	+							
																																		□ P □ e ⊻ ti	PSD ON; energy s time spe	/OFF spectrum ctrum OI	ON/OF	F	

図38 時間スペクトル計測設定

図39 timespectrum タブ内時間スペクトル計測設定

timespectrum タブを開き、メニュー Clear → Start の順にクリックします。実行後以下のようなスペ クトルが表示されます。画面右下側 ROI 部を設定することで、時間分解能 FWHM(ps)が算出されます。

図40 時間スペクトル計測

6.3.6. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

取扱説明書 APV8108

6. 4. (オプション) PSD モード

6.4.1. 準備

前章 6. 1. ヒストグラムモード の 6. 1. 1. 環境 から 6. 1. 4. 波形確認 まで、同様の準備 を行います。

6. 4. 2. 入力波形の確認

threshold 設定からの立ち上がり部分の点数、立ち下がりまでの点数を押さえておきます。

6. 4. 3. エネルギースペクトルの確認

前章6.1.ヒストグラムモード同様の確認を行います。

6.4.4. 設定

(1) config タブにて下記の設定をします。
 mode list
 PSD ON/OFF チェック

device	Dev1	\sim	I	o addi	ress 1	92.1	168.10.1	28		nemo									mo	de li	st	~	/ I	neasu me(s	rement ec)	48:0	0:00	 	me mo	asum ide	ent rea	l time	~		list rea byte(b	d yte) 16	000	I	acq.
mode	list		me	asure de	ment	rea	al time		m ti	ieasur me	emeni	^t 48	:00	:00	real time	00	:00	00		live t	ime	00:0	0:00	0	file s	size(B	/te)			0	sam	pling	1G	(error
config	file	e stat	us																																				
		DPP	OPTIC	NC																																			
CH enabl	e	sic	anal type		signal delay (ns)		polarity	bas rest filte	seline torer er(µs)	thre (dig	shold it)	timing type		CFD function (multiple)	CFD delay (ns)		CFI wal (dig) (it)	QDC sum/j	peak	QDC pretr (ns)	igger	QDC filter (ns)		QDC integra range(al (ns)	QDC full sca (multip	ıle ole)	QDC LLD (digit)		QDC ULD (digit)								
CH1	:	na	mal sig	\sim	0	\$	neg 🗸	4μ	~	50	\$	CFD	\sim	x0.21 🗸	10ns	\sim	20	¢	sum	\sim	-8ns	\sim	10ns	\sim	144	\$	1/1	\sim	1700	\$	1950 🗢	1							
CH2		no	mal sig	\sim	0		neg 🗸	4μ	\sim	50	¢	CFD	\sim	x0.21 🗸	10ns	\sim	20	¢	sum	\sim	-8ns	\sim	10ns	\sim	144	¢	1/1	\sim	1750	÷	2000 🗢	ł							
CH3	1	no	mal sig	\sim	0	\$	neg 🗸	4µ	\sim	50	\$	CFD	\sim	x0.21 🗸	10ns	\sim	20	\$	sum	\sim	-8ns	\sim	10ns	\sim	144	¢	1/1	\sim	10	\$	8000 🗢	1							
CH4 CH5		no	mal sig	\sim	0	-	neg 🗸	4µ	~	50	1 1	CFD	\sim	x0.21 🗸	10ns	\sim	20	÷	sum	\sim	-8ns	\sim	10ns	\sim	144	-	1/1	\sim	10		8000								
CH6		no	mal sig		0		neg 🗸	4µ 40	~	50		CED	\sim	x0.21 V	10ns	\sim	20	19	sum	~	-8ns		10ns	~	144		1/1	~	10		8000	1							
CH7	1	ng	mal sig		0		neg 🗸	4u		50		CFD	\sim	x0.21	10ns	\sim	20	14	sum		-8ns		10ns		144		1/1	\sim	10		8000	1							
CH8	:	no	mal sig	\sim	0	¢	neg 🗸	4µ	~	50	-	CFD	\sim	x0.21 🗸	10ns	\sim	20	-	sum	~	-8ns	\sim	10ns	~	144	-	1/1	\sim	10	-	8000 🗢	i.							
																								Lunna															
																																		⊘ PS	SD ON	OFF			
																																		er	nergy s	pectrum	ON/O	FF	
																																		🗌 tin	me spec	trum OI	V/OFF		

図41 config タブ

(2) リストデータを保存せずとも PSD 計測は可能です。リストデータを保存することで、このファイル を読み込むことで PSD グラフを生成することも可能です。 (3) PSD タブにて下記の設定をします。

PSD axis type X軸とY軸に割り当てるデータを選択します。除算結果にて小数点以下も表現 した場合は商への倍率も設定します。計測中の変更は不可です。

cursor PSD グラフ内の着目エリアを設定します。計測中の変更も可能です。

図42 PSD タブ

6.4.5. 計測開始

メニュー Config \rightarrow Clear \rightarrow Start の順にクリックします。実行後、PSD グラフと cursor area of PSD グラフが更新されます。file save をチェックした場合、イベントを検知しリストデータを取得する と以下の file size(byte)が増加します。計測したデータは、メニュー File - save PSD にて保存できます。

6.4.6. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

7. 終了

メニュー File - quit をクリックします。確認ダイアログが表示された後、quit ボタンをクリックすると 本アプリは終了し、画面が消えます。次回起動時は、終了時の設定が反映されます。

8. ファイル

8.1. ヒストグラムデータファイル

(1)	ファイル形式	
	カンマ区切りのCSVラ	キスト形式
(2)	ファイル名	
	任意	
(3)	構成	±2
	・Header (ヘッター)	出
	Measurement mode	動作モード
	Measurement time	計測設定時間。単位は秒
	Real time	リアルタイム
	Start Time	計測開始時刻
	End Time	計測終了時刻
	※以下CH毎に保存	
	POL	極性
	TGE	波形表示トリガーCH
	TGC	波形取得極性
	RJT	波形取得スレッショルド
	CCF	CFD ファンクション
	CDL	CFD ディレイ
	CWK	CFD walk
	CTH	CFD スレッショルド
	FLK	ベースライン時定数
	PTS	QDC プリトリガー
	LIG	QDC フィルタ時定数
	LIT	QDC サム or ピーク
	AFS	QDC 積分縮小
	CLD	QDC LLD
	CUD	QDC ULD
	TTY	タイミングタイプ
	※以下単一に保存	
	MOD	モード
	MTM	計測時間
	MEMO	メモ

・Calculation (計算) 部 ※以下 ROI 毎に保存 ROI_ch ROI の対象となった入力チャンネル番号 ROI_start ROI 触位置(ch)

ROI_end	ROI 終了位置(ch)			
Energy(keV)	ROI 設定のエネルギー(keV)			
peak(ch)	ROI 間のピーク位置(ch)			
centroid(ch)	ROI間の中心位置(ch)			
peak(count)	ROI間のピークchカウント			
gross(count)	ROI間のカウント数の総和			
gross(cps)	ROI間のカウント数のcps			
net(count)	ROI間のバックグラウンドを差し引いたカウント数の総和			
net(cps)	ROI間のバックグラウンドを差し引いたカウント数の総和のcps			
FWHM(ch)	ROI 間の半値幅(ch)			
FWHM(%)	ROI 間の分解能(%)			
FWHM	ROI間の半値幅			
FWTM	ROI間の全値幅			
・Status(ステータス))部			
※以下CH毎に保存				
outtput count	アウトプットカウント			
outtput rate	アウトプットカウントレート			
dead time	デットタイム比			
・Data (データ) 部				
チャンネル毎のヒストグラムデータ。 最大8192点。				

8.2. 波形データファイル

(1)	ファイル形式	╶┼ᄀ└╥┽
(2)	カノマ区切りのしらマラ	
(2)	ノアイル名	
(3)	構成	
	•Header(ヘッダー)	部
	Measurement mode	動作モード
	Measurement time	計測設定時間。単位は秒
	Real time	リアルタイム
	Start Time	計測開始時刻
	End Time	計測終了時刻
	※以下 CH 毎に保存	
	POL	極性
	TGE	波形表示トリガーCH
	TGC	波形取得極性
	RJT	波形取得スレッショルド
	CCF	CFD ファンクション
	CDL	CFD ディレイ
	CWK	CFD walk
	CTH	CFD スレッショルド
	FLK	ベースライン時定数
	PTS	QDC プリトリガー
	LIG	QDC フィルタ時定数
	LIT	QDC サム or ピーク
	AFS	QDC 積分縮小
	CLD	QDC LLD
	CUD	QDC ULD
	TTY	タイミングタイプ
	※CH毎はここまで	
	MOD	モード
	MTM	計測時間
	MEMO	メモ
	・Status(ステータス))部
	※以下 CH 毎に保存	
	outtput count	アウトプットカウント
	outtput rate	アウトプットカウントレート
	dead time	デットタイム比
	•Data(データ)部	
	表示中 device の波形テ	

8.3. リストデータファイル

(1) ファイル形式

バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式

(2) ファイル名

config タブ内 list file path に設定したファイルパスに、file number を0詰め6桁付加したものにな ります。例えば、list file path に D.¥data¥123456.bin、file number に 1 と設定した場合、 D.¥data¥123456_000001.bin です。

list file size に到達すると、保存中のファイルを閉じます。その後、list file number を自動で1つ繰り 上げ新しいファイルを開き、データのファイル保存を継続します。

(3) 構成

1 イベントあたり 80bit(10Byte、5WORD)

Bit79	78				64
WAV[0]		rea	l time[5339]		
63					48
		real time[38.23]		
47					32
		real time	[227]		
31		25	24	17	16
	real time[60]		real time 固定小数[70]		CH[3]
15 13	12				0
CH[20]			QDC[120]		

- 図 44 list データフォーマット
- Bit79

WAVE データ有無。有る場合は1。

- ・ Bit 78 から Bit 25 real time。 54 Bit。 1 Bit あたり 1 ns。
- Bit24 から Bit17 real time 固定小数。8Bit。1Bit あたり 3.90625ps。
- Bit16からBit13 CH。チャンネル番号。4Bit。CH1は0、CH16は15。
- Bit12からBit0 QDC(積分値)。符号無13ビット整数。収集した波形にフィルタをかけ、スレッショルドを超えたところから、設定範囲間の波形の積算値。

8. 4. (オプション) PSA リストデータファイル

- (1) ファイル形式バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式
- (2) ファイル名
 config タブ内 list file path に設定したファイルパスに、file number を0 詰め6 桁付加したものにな
 ります。例えば、list file path に D.¥data¥123456.bin、file number に 1 と設定した場合、
 D.¥data¥123456_000001.bin です。
 list file size に到達すると、保存中のファイルを閉じます。その後、list file number を自動で1つ繰り
 上げ新しいファイルを開き、データのファイル保存を継続します。

(3) 構成

1イベントあたり128bit(16Byte、8WORD)

Bit127					112	
	RISE[15.0]					
Bit111					96	
		FALL[15.0]			
Bit95					80	
		TOTAL	[15.0]			
Bit79	78				64	
WAV[0]		rea	l time[53.39]			
63					48	
		real time[[3823]			
47					32	
		real time	[227]			
31		25	24	17	16	
	real time[60]		real time 固定小数[70]		CH[3]	
15 13	12				0	
CH[20]			QDC[120]			
					-	

図 45 list データフォーマット

- Bit 127 から Bit 112 RISE (波形立上部分積分) 値。符号無 16 ビット整数。
- Bit111からBit96 FALL(波形立下部分積分)値。符号無16ビット整数。
- Bit95からBit80 TOTAL(波形全積分)値。符号無16ビット整数。
- Bit 79 WAVE データ有無。有る場合は 1。
- ・ Bit 78 から Bit 25 real time。 54 Bit。 1 Bit あたり 1 ns。
- Bit24 から Bit17 real time 固定小数。8Bit。1Bit あたり 3.90625ps。
- Bit16からBit13 CH。チャンネル番号。4Bit。CH1は0、CH16は15。
- Bit12からBit0
 QDC(積分値)。符号無13ビット整数。収集した波形にフィルタをかけ、スレッショルドを超えたところから、設定範囲間の波形の積算値。

8.5. (オプション) PSD データファイル

- (1) ファイル形式カンマ区切りのCSV テキスト形式
- (2) ファイル名任意
- (3) 構成

PSD 部と PSD 2D histogram 部と cursor area spectrum 部からなります。PSD 2D histogram 部と cursor area spectrum 部のデータは、カウントが 1 以上あるデータで可変長です。

[PSD]XAxisCursorRangeカーソルでのX軸範囲開始チャネル及び終了チャネルYAxisCursorRangeカーソルでのY軸範囲開始チャネル及び終了チャネルCompress (x/16384)圧縮率のチャネル数

[PSD 2D histogram]

 #FALL,TOTAL,Counts
 X 軸に選択した List 内データ, Y 軸に選択した List 内データ, 積算カウント

 6952,9192,1

(可変長。最大8192×8192=67108864)

[cursor area spectrum] FALL,Counts : X軸に選択したList 内データ,積算カウント

6644,0

:

:

(可変長。最大8192)

8.6. (オプション)リスト波形データファイル

- (1) ファイル形式 バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式
- (2) ファイル名 任意
- (3) 構成

① 通常(リストデータ部 80Bit の場合)					
Bit79	78			64		
WAV[0]	rea	ıl time[5339]				
63				48		
	real time	[38.23]				
47				32		
	real time	9[227]				
31	25	24	17	16		
	real time[60]	real time 固定小数[70]		CH[3]		
15 13	12			0		
CH[20]		QDC[120]				
	wave num	ber[150]				
	header[3116]				
	header	[15.0]				
wave data[15.0] $ imes$ wave number分						

図 46 list-wave データフォーマット(通常)

- Bit79
- WAVE データ有無。有る場合は1。 real time。54Bit。1Bit あたり1ns。 • Bit78からBit25
- Bit24からBit17 real time 固定小数。8Bit。1Bit あたり 3.90625ps。
- Bit16からBit13 CH。 チャンネル番号。 4Bit。 CH1 は0、 CH16 は 15。
- Bit12からBit0
- 波形データ
- 波形データ
- QDC(積分値)。符号無13ビット整数。収集した波形にフィルタをか け、スレッショルドを超えたところから、設定範囲間の波形の積算値。 wave number。16Bit。波形点数。 header。32Bit。ヘッダーとして下記のCH情報が付加されます。 CH1 ヘッダー 0x57415630 (=WAV0) CH2 ヘッダー 0x57415631 (=WAV1) CH3 ヘッダー 0x57415632 (=WAV2) CH4 ヘッダー 0x57415633 (=WAV3) CH5 ヘッダー 0x57415634 (=WAV4) CH6 ヘッダー 0x57415635 (=WAV5) CH7 ヘッダー 0x57415636 (=WAV6) CH8 ヘッダー 0x57415637 (=WAV7) CH9 ヘッダー 0x57415638 (=WAV8)

	CH10 ヘッダー	0x57415639 (=WAV9)
	CH11 ヘッダー	0x57415641 (=WAVA)
	CH12 ヘッダー	0x57415642 (=WAVB)
	CH13 ヘッダー	0x57415643 (=WAVC)
	CH14 ヘッダー	0x57415644 (=WAVD)
	CH15 ヘッダー	0x57415645 (=WAVE)
	CH16 ヘッダー	0x57415646 (=WAVF)
• 波形データ	wave data。波形	1 点当たり 16bit。16384digit のオフセットがあり
	ます。wave num	ber 分の波形情報が付加されます。

2 PSA f	すきリスト(リストデータ部 128Bit	:の場合)				
Bit127				112		
	RISE[1	50]				
Bit111				96		
	FALL[15.0]				
Bit95				80		
	TOTAL	[15.0]				
Bit79	78			64		
WAV[0]	rea	l time[5339]				
63				48		
	real time[[38.23]				
47				32		
	real time	[227]				
31	25	24	17	16		
	real time[60]	real time 固定小数[70]		CH[3]		
15 13	12			0		
CH[20]		QDC[120]				
	wave number[15.0]					
	header[31.16]					
	header	[15.0]				
	wave data[15.0] × wave number分					

図 47 list-wave データフォーマット (PSA 付きリスト)

- Bit 127 から Bit 112 RISE (波形立上部分積分) 値。符号無 16 ビット整数。
- Bit111 から Bit96 FALL(波形立下部分積分)値。符号無 16 ビット整数。
- Bit95からBit80 TOTAL(波形全積分)値。符号無16ビット整数。
- Bit 79 WAVE データ有無。有る場合は1。
- ・ Bit 78 から Bit 25 real time。 54 Bit。 1 Bit あたり 1 ns。
- Bit24 から Bit17 real time 固定小数。8Bit。1Bit あたり 3.90625ps。
- Bit16からBit13 CH。チャンネル番号。4Bit。CH1は0、CH16は15。
- Bit12からBit0
 QDC(積分値)。符号無13ビット整数。収集した波形にフィルタをかけ、スレッショルドを超えたところから、設定範囲間の波形の積算値。
- ・ 波形データ wave number。16Bit。波形点数。
- 波形データ
- header。32Bit。ヘッダーとして下記のCH 情報が付加されます。
 - CH1 ヘッダー 0x57415630 (=WAV0)
 - CH2 ヘッダー 0x57415631 (=WAV1)
 - CH3 ヘッダー 0x57415632 (=WAV2)
 - CH4 ヘッダー 0x57415633 (=WAV3)
 - CH5 ヘッダー 0x57415634 (=WAV4)
 - CH6 ヘッダー 0x57415635 (=WAV5)

CH7 ヘッダー	0x57415636 (=WAV6)
CH8 ヘッダー	0x57415637 (=WAV7)
CH9 ヘッダー	0x57415638 (=WAV8)
CH10 ヘッダー	0x57415639 (=WAV9)
CH11 ヘッダー	0x57415641 (=WAVA)
CH12 ヘッダー	0x57415642 (=WAVB)
CH13 ヘッダー	0x57415643 (=WAVC)
CH14 ヘッダー	0x57415644 (=WAVD)
CH15 ヘッダー	0x57415645 (=WAVE)
CH16 ヘッダー	0x57415646 (=WAVF)
wave data。波形	1 点当たり 16bit。16384digit のオフセットがあり
ます。。wave nur	nber 分の波形情報が付加されます。

波形データ

8.7. (オプション)リストパイルアップ波形データファイル

- (1) ファイル形式バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式
- (2) ファイル名
 config タブ内 list file path に設定したファイルパスに、file number を0 詰め6 桁付加したものにな
 ります。例えば、list file path に Di¥data¥123456.bin、file number に 1 と設定した場合、
 Di¥data¥123456_000001.bin です。
 list file size に到達すると、保存中のファイルを閉じます。その後、list file number を自動で1 つ繰り
 上げ新しいファイルを開き、データのファイル保存を継続します。
- (3) 構成

9. トラブルシューティング

9.1. 接続エラーが発生する。

起動時またはメニュー config にて connection error エラーがする場合、ネットワークが正しく接続されていない可能性があります。この場合、以下を確認します。

(1) 起動前の構成ファイル config.ini 内IP が 192.168.10.128 と設定され、[System] セクションの各ポート番号が下記のとおり定義されており、本アプリを起動して IP Address の表示が同じあることを確認します。
 [System]
 PCConfigPort = 55000

PCStatusPort = 55001

PCDataPort = 55002

DevConfigPort =4660

DevStatusPort = 5001

DevDataPort = 24

SubnetMask = "255,255,255.0"

Gateway = "192.168.10.1"

(2) PCのネットワーク情報が本機器と接続できる設定かどうかを確認します。本機器のデフォルト設定は以下の通りです。

IPアドレス 192.168.10.128

サブネットマスク 255.255.255.0

デフォルトゲートウェイ 192.168.10.1

- (3) UDP 接続用の PC 側の任意ポート番号が競合している。この場合は起動前の構成ファイル config.ini内 Port に別の番号を定義します。
- (4) イーサネットケーブルが接続されている状態で電源をONにします。
- (5) コマンドプロンプトにて ping コマンドを実行し本機器と PC が通信できるかを確認します。
- (6) 本機器の電源を入れ直し、再度 ping コマンドを実行します。
- (7) ウィルス検出ソフトやファイヤーフォールソフトをOFF にします。
- (8) PC のスリープなどの省電力機能を常に ON にします。
- (9) ノートPCなどの場合、無線LAN機能を無効にします。

9.2. コマンドエラーが発生する

オプションの有無などによる、本機器のファームウェアとアプリケーションの組み合わせがあっていない 場合があります。弊社までお問い合わせください。

9.3. ヒストグラムが表示されない

メニュー Start を実行しても histogram タブのグラフに何も表示されない場合、以下の点を確認します。

- (1) spectrum タブ内 spectrum on/off にて CH1 を ON に 設定します。
- (2) output rate(cps)がカウントしているか確認します。
- (3) threshold の値が小さすぎたり大きすぎたりせず、output rate(cps)のカウントを見ながら、 100から30くらいまで設定を下げながら変更していき、output rate(cps)がノイズを検知し て高くならないように調整します。
- (4) グラフのX軸とY軸を右クリックしてオートスケールにします。

9.4. Pアドレスを変更したい

別添の「取扱説明書 APG5107 搭載製品 IP アドレス変更方法」を参照してください。添付無き場合は 弊社までお問い合わせください。 取扱説明書 APV8108

株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL:029-350-8011 FAX:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com

63