スイッチドキャパシタ ADC

APV81G32Q

取扱説明書

第1.1.0版 2021年8月

		株式会社 テクノエーピー	
〒312- TEL FAX URL	-0 : :	012 茨城県ひたちなか市馬渡 2976-15 029-350-8011 029-352-9013 http://www.techno-ap.com	
e-mail	:	info@techno-ap.com	

一目次一

1.		概要	4
2.		仕様	
З.		外観	
4.		セットアップ	
4.	1.	接続	
4.	2.	電源投入	
4.	З.	アプリケーションのインストール	
4.	4.	ネットワークのセットアップ	
5.		アプリケーション画面	
5.	1.	アプリケーション起動	
5.	2.	起動画面	
5.	З.	config タブ	
5.	4.	wave タブ	
5.	5.	dump タブ	
5.	6.	advanced タブ	
6.		アプリケーション起動時の操作	
6.	1.	設定	
6.	2.	計測開始	
6.	З.	計測停止	
7.		アプリケーション終了の手順	
8.		データフォーマット	
8.	1.	全体構成	
8.	2.	ヘッダ部	
8.	З.	オフセット部	
8.	4.	データ部	

安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下、弊社)の製品をご購入いただき誠にありがとうございます。 ご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正しくご使 用ください。

本機器のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「当社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア)「当社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

1. 概要

APV81G32Q(以下、本機器)は、VME1幅にて最大32CHのアナログパルス信号を、スイッチドキャパシタ ADC によって高速に AD 変換します。

付属のデータ計測用アプリケーション(以下、本アプリ)の計測モードには wave(ウェーブ)モード、 dump(ダンプ)モードがあります。

wave (ウェーブ) モードでは、最大 1024 点の波形データを、連続的に外部からイーサネット経由で読み出せます。

dump(ダンプ)モードでは、最大1024点の波形データを一旦メモリへ格納後、外部からイーサネット 経由で読み出せます。

本書は、本機器の取り扱いについて記載したものです。 ※ 本書の記載内容は予告なく変更することがあります。

2. 仕様

(1)	アナログ入力

- チャネル数 32CH
- 入力レンジ ±10V
- ・入力インピーダンス 50Ω
- ・ゲイン ×0.5、×1、×2、×5、×10 ※CH 毎に設定可能
- ・周波数帯域 500MHz
- (2) ADC
 - ・ADC チップ DRS-4
 - ・サンプリング周波数 1GHz
 - ADC 分解能 14bit
 - ADC メモリ 1024 セル
- (3) メモリ DDR2 1Gbyte (512Mbyte x2)
- (4) 通信インターフェース Ethernet TCP/IP 1000Base-T及びUDP
- (5) 消費電流 +5V、4.0A(最大)
- (6) 外径寸法・VME1幅 20(W) x 262(H) x 187(E) mm
- (7) 重量 約435g
- ※ 注意事項

外部クロック使用時のデータ取得不能期間について

CLK(外部クロック入力端子)使用時は、START(t=Os)信号のロジックレベルが High から Low になったタイミングで、本機器は、内部クロック駆動から外部クロック駆動に切り替わります。 この切り替わりに伴い、t=O~20 µs の間においては、TRG 信号は認識されず、Signal A 及び Signal B からの信号も取得できません。 3. 外観

図1 APV81G32Q 外観

- (1) LED P(緑) 電源表示。本機器に電源が投入されていると点灯
 - V(黄) アナログ信号データ取得中に点灯
 - E(赤) DRS4 初期化完了後に消灯 外部クロックが外れた際に点灯(外部クロック使用モード時限定)
- (2) Signal A CH1~16のアナログインプット端子 コネクタはHIF3BA-34PA-2.54DS。入力インピーダンスは50Ω
- (3) Signal B CH17~32のアナログインプット端子 コネクタはHIF3BA-34PA-2.54DS。入力インピーダンスは50Ω。
- (4) RESET リセットスイッチ このスイッチを押下すると、内部パラメータが初期値に戻り、PLLがリセットされ ます。
- (5) CLK 外部クロック入力端子。10MHzのデューティー比50%の矩形波を入力してください。
 信号レベルは3.3V LVTTL 又は5VTTL に対応。入力インピーダンスは1kΩ、
 コネクタは Lemo.00.250 レセクタプル
- (6) START START 信号(t=Os)入力端子 この端子に入力される信号のロジックレベルが High から Low になったタイミング で、タイムスタンプがリセットされます。信号レベルは TTL、入力インピーダンス はハイインピーダンス、コネクタは Lemo_00.250 レセクタプル。パルス波形、正 論理、1 パルスで入力します。
- (7) END END 信号 (t=end) 入力端子
 信号レベルは TTL、入力インピーダンスはハイインピーダンス、コネクタは
 Lemo.00.250 レセクタプル。パルス波形、正論理、1 パルスで入力します。
- (8) TRG TRG 信号(計測用トリガー)入力端子 この端子に入力される信号のロジックレベルが High から Low になったタイミングで、Signal A 及び Signal B (アナログインプット端子)の信号を取得します。信号レベルは TTL、入力インピーダンスはハイインピーダンス、コネクタはLemo.00.250 レセクタプル。パルス波形、正論理、wave モード時は 100Hz 以下、dump モード時は 50Hz 以下で入力します。

START、TRG、Signal A(B)(模擬信号)のタイミングは下図の通りです。

(9) LAN イーサネットケーブル用 RJ45 コネクタ。1000Base-T。

4. セットアップ

4.1. 接続

本機器とPCをイーサネットケーブルで接続します。PCによってはクロスケーブルをご使用ください。 ハブを使用する場合はスイッチングハブをご使用ください。

4.2. 電源投入

- (1) 本機器を装着している VME ラックの電源を投入します。電源投入後、本機器が完全に立ち上がるまで 1 分間程、待ちます。
- (2) 本アプリをインストールする PC を起動します。これは上記(1)より前でも構いません。

4.3. アプリケーションのインストール

本アプリはWindows上で動作します。ご使用の際は、使用するPCに本アプリのEXE(実行形式)ファ イルとNational Instruments 社のLabVEW ランタイムエンジンをインストールする必要があります。 本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラに は、EXE(実行形式)ファイルとLabVEW のランタイムエンジンが含まれており、同時にインストール ができます。インストール手順は以下の通りです。

- (1) 管理者権限で Windows ヘログインします。
- (2) 付属 CD-ROM 内 Installer フォルダ内の Setup.exe を実行します。対話形式でインストールを 進めます。デフォルトのインストール先は"C:¥TechnoAP"です。このフォルダに、本アプリ の実行形式ファイルと設定値が保存された構成ファイル config.ini がインストールされます。
- (3) スタートボタン-TechnoAP-APV81G32Qを実行します。
- 尚、アンインストールはプログラムの追加と削除から APV81G32Q を選択して削除します。

4.4. ネットワークのセットアップ

本機器と本アプリの通信状態を下記の手順で確認します。

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。
 - Pアドレス : 192.168.10.2 ※本機器割り当て以外のアドレス
 サブネットマスク : 255.255.255.0
 デフォルトゲートウェイ : 192.168.10.1
 ングケートウェイ : 第度地2後10.1
- (2) VME ラックの電源をON にします。電源投入後 10 秒程待ちます。

(3) PCと本機器の通信状態を確認します。Windowsのコマンドプロンプトにてpingコマンドを実行し、本機器とPCが接続できるかを確認します。本機器のIPアドレスは基板上またはユニットの背面にあります。工場出荷時の本機器のネットワーク情報は以下の通りです。 IPアドレス : 192,168,10,128

	•	192.100.10.120
サブネットマスク	:	255.255.255.0
デフォルトゲートウェイ	:	192.168.10.1

> ping 192.168.10.128

C:¥WINDOWS¥system32¥cmd.exe	_		\times
Microsoft Windows [Version 10.0.19042.1083] (c) Microsoft Corporation. All rights reserv	ved.		^
C:¥Users¥Administrator>ping 192.168.10.128			
192.168.10.128 に ping を送信しています 32 / 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間	バイトの <1ms <1ms <1ms <1ms	のデータ TTL=32 TTL=32 TTL=32 TTL=32 TTL=32	:
192.168.10.128 の ping 統計: パケット数: 送信 = 4、受信 = 4、損失 = C ラウンド トリップの概算時間 (ミリ秒): 最小 = Oms、最大 = Oms、平均 = Oms) (0% 0	り損失)、	
C:¥Users¥Administrator>			, ,

図3 通信接続確認 ping コマンド実行

 (4) 本アプリを起動します。デスクトップ上のショートカットアイコン APV81G32Q または Windows ボタンから APV81G32Q を検索して起動します。
 本アプリを起動した時に、本機器との接続に失敗した内容のエラーメッセージが表示される場合
 は、後述のトラブルシューティングを参照ください。

5. アプリケーション画面

5.1. アプリケーション起動

- (1)以下の何れかの方法で、本アプリを起動します。
 ・Windowsのデスクトップ画面にある、本アプリのショートカットをダブルクリック
 ・Windows スタートボタン-TechnoAP-APV81G32Q を選択
- (2) 本アプリが起動すると、自動的に全ての本機器に対して、初期化及びオフセット計測を開始しますので、 それらがが終わるまで(黄色のポップアップ警告画面が消えるまで)暫く待ちます。

5.2. 起動画面

図4 起動画面

メニュー

File – open config	指定された設定ファイルを読み込みます。
File – save wave	wave モードで取得した最後の波形データを、指定されたファイルに
	保存します。
File – reconnect device	本機器と再接続します。
File - quit	アプリケーションを終了します。

タブ

config	計測時間など計測全般を設定
wave	wave モードにおけるファイル等の指定
dump	dump モードにおけるファイル等の指定
advanced	wave, dump モード共通の詳細パラメータの設定

タブ以外(タブ下)

PID	※未使用です
ShotNo	※未使用です
Mode	※未使用です
remote ctrl	※未使用です

タブ以外(グラフ右)

target device	2台以上使用	用する場合、本機器を個別に選択します。 wave モード時、及
	び、Pアド	レス確認時に使用します
mode	計測モード	(wave, dump)を選択します
Clock and TimeClear	計測中のべ	ースクロック、及びタイムスタンプクリアの方法を選択します
	internal	ベースクロックとして、本機器の内部クロックを使用し、
		CLK 端子からのクロック信号は使用しません。 タイムスタ
		ンプは、計測開始と同時にクリアし、START 端子からの信
		号は使用しません。
	external	ベースクロックとして、CLK 端子からのクロック信号を使
		用し、タイムスタンプクリアには、START 端子からの信号
		を使用します。
TRG source	計測用トリス	ガーの種別を選択します
	external	外部機器からのトリガーを使用します
	internal	本ソフトからの1秒間隔のトリガーを使用します
delay (ns)	外部機器から	らのトリガーを受け取った時点から、実際にサンプリングを開
	始するまでの	の遅延時間を8ns刻みで指定します
	(上記 TRG	G source が external 時のみ使用)
start	計測を開始し	します
stop	計測を停止し	します
data length	1計測あたり	りのデータ長(後述の config タブ中 wave length で指定し
	た値)を表読	示します
acquisition time	計測設定時間	間を表示します
elapsed time	計測経過時間	間を表示します
run count	計測により	导られたデータ件数を表示します。 dump モードでは、進捗率
	(trigger m	nax count に対する割合)をパーセンテージで表示します
read bytes	dump E-	ドにおいて本機器内に蓄積したデータを取り込んでいる場合、
	取込んだサー	イズを表示します

P	target device で選択された本機器用に定義されている IP アドレスを表示
	します
configuration (LED)	本機器へのパラメータ送信中に点灯します
acquisition (LED)	計測中に点滅します
save. (LED)	各モードにてデータ保存中に点滅します
transfer (LED)	※未使用
error	エラー表示。本機器との通信や設定エラー等が起きると、赤×、エラーコ
	ードおよびエラーメッセージを表示します

mode (計測モード), Clock and TimeClear, TRG source の組合せ対応可否を、下表に示します。

mode (計測モー ド)	Clock and TimeClear	TRG source	対応可否
	outorpol	external	0
duman	external	internal	×
aump	internel	external	0
	Internal	internal	0
	outorool	external	0
	external	internal	×
wave	internel	external	0
	Internal	internal	0

5. 3. config タブ

config	wave	dump	advanced
gener	ral		
acq ti	ime(s)	1.411	
00:00	1:00	1÷1	
count	t of meas. f	for offset	
-			
wave	e length		
102	4	\sim	

図5 config タブ

acq. time 計測時間を設定します。設定可能範囲は1から86400秒(24時間)です。 dump モードでは本時間に達する、内部メモリの上限までデータが格納される、ある いは後述の trigger max count で指定した件数に達する、いずれかが成立した時点 で、計測を自動停止します。 wave モードでは、本時間に達すると、計測を自動的に停止します。

count of meas. for offset

オフセット計測を行う際の計測回数を設定します

- wave length 1計測当たりのデータ長を、256、512、1024から選択します
- initialize 本機器に対して初期化の実行を命令します
- OFFSET オフセット計測を実行します

5. 4. wave タブ

anafa wave	dura advanta		
coning	dump advanced		
wave file			
wave save			
wave base file	path		
C:#Data¥wav	e		
	han M		
0 K	der file name		
	-		
🗹 display wa	ve at measurement		
wave file for of	fline analysis		
wave file path			
		E	
event number			
1			

図6 wave タブ

(グラフ) 後述のdisplay wave at measurementが有効な場合、wave モード計測中にADC より取り込まれた wave データを適宜グラフとして表示します。 横軸はサンプリングナンバー/時間、縦軸はADC コード となっております。

以下の項目は、計測開始前に指定・使用します。

wave save 計測した wave データを外部ファイルに保存する場合、チェックを入れます wave base file path

wave データファイルの絶対パスの基準名称を設定します。

wave file number

wave データファイルに付加される番号の開始番号を設定します。 0から 999999 まで指定可能で、計測毎に自動的に 1 加算され、 999999 を超 えた場合、 0 にリセットされます。

file name 現在の設定で保存されるファイル名(パスは除く)が表示されます

以下の項目は、計測後のデータファイルを確認する際に使用します。

wave file path 既存 wave データファイルの絶対パスを設定します。設定したファイルのデータが、グラフに表示されます。

event number wave file path で設定したファイルのレコード番号を指定します。指定した番号に 該当するレコードのデータをグラフに表示します。

display wave at measurement

計測中、受信した wave データを表示する場合は、チェックを入れます

5.5. dump タブ

config wave dump advanced	
dump file dump base file path C:¥Data¥dump dump file number file name 1 000001_2211_01.bin	trigger max count 4096
dump file for offine analysis dump file path event number 1	
read memory	

図7 dump タブ

(グラフ) dump モード計測後、メモリより取り込まれた波形データをグラフ表示します。横軸はサンプリングナンバー/時間、縦軸は ADC コードとなっております。

以下の項目は、計測開始前に指定・使用します。

dump base file path dump データファイルの絶対パスの基準名称を設定します。

dump file number

dump データファイルに付加される番号の開始番号を設定します。 0から 999999 まで指定可能で、計測毎に自動的に 1 加算され、 999999 を超 えた場合、0にリセットされます。

file name 現在の設定で保存されるデバイス1のファイル名(パスは除く)が表示されます。

trigger max count

dump モードで計測する際の計測データ件数の上限を設定します

以下の項目は、計測後に指定・使用します。

- dump file path 既存 dump データファイルの絶対パスを指定します。指定したファイルのデータが グラフに表示されます。
- event number dump file path で設定したファイルのレコード番号を指定します。指定した番号に 該当するレコードのデータをグラフに表示します。
- read memory dump モードで計測したデータを本機器から読出して、パソコン内に保存します。 計測後に、改めて再読出しする際に使用します。データは次回の dump 計測時まで 保持されます。

5. 6. advanced タブ

	ingge		1.722.0		
ch17-ch24 offset dac	_data(V) ch	25-ch32 offset dac	_data(V) 2	dac	_data(V) 3
0 CH17 p	0.80000	0 CH25 p	0.80000	0 DR2OOFS	1.2000
1 CH17 n	0.80000	1 CH25 n	0.80000	1 DR2ROFS	1.5500
2 CH18 p	0.80000	2 CH26 p	0.80000	2 DR2BAIAS	0.7000
3 CH18 n	0.80000	3 CH26 n	0.80000	3 DR3OOFS	1.2000
4 CH19 p	0.80000	4 CH27 p	0.80000	4 DR3ROFS	1.5500
5 CH19 n	0.80000	5 CH27 n	0.80000	5 DR3BAIAS	0.7000
6 CH20 p	0.80000	6 CH28 p	0.80000		
7 CH20 n	0.80000	7 CH28 n	0.80000		
8 CH21 p	0.80000	8 CH29 p	0.80000		
9 CH21 n	0.80000	9 CH29 n	0.80000		
10 CH22 p	0.80000	10 CH30 p	0.80000		
11 CH22 n 🐇	0.80000	11 CH30 n	0.80000		
12 CH23 p	0.80000	12 CH31 p	0.80000		
13 CH23 n 🐇	0.80000	13 CH31 n 🐇	0.80000		
14 CH24 p	0.80000	14 CH32 p	0.80000		
15 CH24 n	0.80000	15 CH32 n	0.80000		
			[bach se	tting

図8 advanced タブ

DAC1~DAC3タブ

各CHのオフセット値、減衰率を設定します。 オフセット値は電圧(V)、減衰率は倍率で設定します。

Trigger タブ 計測トリガーに関するパラメータを設定します。
 TRG DLY(64): A/D コンバータの遅延時間の設定を行います。単位は 8 nsec
 単位となっており、8倍した値がナノ秒換算値になります。尚、この設定は推奨値
 (=64)の設定として下さい。
 READ PHASE: DRS4の読出しクロックとADC サンプリングクロックの位相差
 を設定します。この設定は "270 deg"が推奨値です。

bactch setting 各CHのオフセット値、減衰率を一括で設定します。 本機器単位、全本機器を対象とした一括設定が行えます。

device:		
• target device • this device • all device	CH1 - 32 offset(V) offset Pos (V) offset Neg (V) 0.80000 setting	CH1 - 32 Attenuator Attenuator x10.0 setting
		exit

図9 一括設定ダイアログ

※本タブの設定を変更した場合は、config タブに戻って初期化処理(initialize ボタンをクリック)を行って下さい。

6. アプリケーション起動時の操作

本アプリを起動すると、自動的に全ての本機器に対して、初期化及びオフセット計測を開始します。 何らかのエラーが表示された場合は、本機器の電源を入れ直してから、本アプリを再開するか、あるい は、本アプリにて以下の一連の手順を実行します。

- (1) File メニューから reconnect device を選択して、本機器との接続を再確立
- (2) config タブの initialize ボタンをクリックして、本機器の初期化を実施
- (3) config タブの OFFSET ボタンをクリックして、オフセット計測を実施

6.1. 設定

config タブ内の設定と mode、 Clock and TimeClear、 TRG source を選択します。

wave モードでは本機器1台ずつしか動作しないため、target device も選択します。

必要に応じて、選択した mode 側のタブ内の設定(file number など)を行います。

6.2. 計測開始

start ボタンをクリックします。モードに応じた計測を開始します。計測は設定した時間の間、実行されます。各モードの動作は以下の通りです。

(1) wave モードの場合

wave タブに切り替わります。波形データを最大32CH 分連続的に取り込みます。 グラフ下部のアイコンを操作することで、X 軸とY 軸の設定、グラフの拡大/縮小表示などができま す。 acq time で指定した計測時間に達した場合に計測を自動停止します。

図10 wave モード時(上図2つのスパイクノイズは既知の事象です)

(2) dumpモードの場合

dump タブに切り替わります。計測中はメモリに蓄えている最中の為、波形データを表示することは できません。内部メモリの上限までデータが格納される、trigger max count で指定した件数に達す る、あるいは acq time で指定した計測時間に達した場合に計測を自動停止します。

6.3. 計測停止

前出の自動停止より前に計測を停止する場合は、stopボタンをクリックします。クリック後、直ちに計測 を終了します。

7. アプリケーション終了の手順

計測中である場合は、画面上のstopボタンをクリックして計測を停止します。 メニューFile-quitを選択します。選択後、本アプリは終了し、画面が消えます。 次回起動時は、終了時の設定が反映されます。

8. データフォーマット

計測により保存したデータファイルは、ビッグエンディアン形式で記録しています。 本項ではデータファイルの形式について説明します。

8.1. 全体構成

計測したデータは wave モード、dump モードで共通のフォーマットになります。以下の図はデータファイル全体の概略構成です。

8.2. ヘッダ部

ヘッダ部には、計測データの全般的な情報を保存しています。以下の図はヘッダ部の構成です。

図 12 ヘッダ部構成

バージョン このファイルのフォーマットのバージョン(=1)を記録しています。

レビジョン このファイルのフォーマットのレビジョン(=0)を記録しています。

cell幅 計測した際のcell幅(1~1024)を記録しています。

チャンネル数 本機器のチャンネル数を記録しています。この本機器は32CHの為、 "32"を記録 しています。

データ件数 このファイルに記録している計測データの件数になります。

計測ボードD 常に1になります。

計測モード このデータを計測した際のモードを記録しています。

No	モード	値
1	waveモード	1
2	dumpモード	З

計測時刻

計測した際の時刻情報を記録しています。

この項目はモードにより意味合いが異なります。各モードの意味合いと時刻情報の詳細な構成は、以下の通りです。

No	モード	内容
1	wave モード	計測を開始した時刻を記録しています
2	dumpモード	データを保存した時刻を記録しています

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0	年(西暦)		
+2	月(01~12)	⊟ (01~31)	
+4	時(00~23)	分(00~59)	
+6	秒(00~59)	未使用	
+8			

図 13 計測時刻の構成

8.3. オフセット部

オフセット部には、計測した再のオフセット値を記録しています。 オフセット値はチャンネル単位で記録しており、各チャンネルがすべてのセル毎の値を記録しています。 以下の図はオフセット値の構成です。

図14 オフセット部の構成

各CHは全cellの値を記録しています。

各レコード (cell 単位) は cell アドレスに対応して記録しています。

8.4. データ部

データ部には、計測トリガ単位での計測値を記録しています。 各データは、タイムスタンプ等の時刻情報と計測値から成ります。 データ部の概略構成を下図に示します。

図15 データ部の構成

(1) レコードヘッダ

レコードヘッダには、計測時点での時刻情報とストップ位置を記録しています。

図16 レコードヘッダの構成

① ストップポジション (値:0~1023)

ストップポジションは計測した時点のDRS4の cell のアドレスを記録しております。本機器は8CH単位で計測データを管理しています。その為、CHO1~O8、CHO9~16、CH17~24、CH25~32の ストップポジションは同じ値になります。

2 タイムスタンプ

タイムスタンプは計測した時点での時刻情報を記録しています。時刻は相対時間での管理としていて、 8nsec/1digitで記録しています。本項目の値を8倍した値が時刻(nsec単位)になります。 (2) 計測値

計測値は<u>オフセット値を差し引いた値</u>でCH単位により記録しています。 また、CH単位のレコード長は固定ではありません。計測時の cell 幅に応じたサイズになります。 cell 幅

の判別はヘッダ部から行います。以下の図は計測値の構成です。

図17 計測値の構成

各CHは cell 単位のデータは時系列で記録しています。その為、レコード番号と cell 番号は一致しません。 cell 番号を特定したい場合はレコードヘッダのストップポジションを基に算出して下さい。以下の図は、 cell 幅=256 における、計測データの記録順の例になります。

図18 計測値の格納順序の詳細

取扱説明書 APV81G32Q

株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL:029-350-8011 FAX:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com

31