マルチチャネルアナライザ

APV8216

取扱説明書

第1.0.0版 2021年11月

株式会社 テクノエーピー 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail: info@techno-ap.com

安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下、弊社)の製品をご購入いただき誠にありがとうございます。 ご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正しくご使 用ください。

弊社製品のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

🚫 禁止事項

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

<u>注意事項</u>

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「当社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア)「当社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

一目次一

1.		概要	4
1.	1.	概要	4
2.		仕様	6
З.		外観	
4.		セットアップ	
4.	1.	アプリケーションのインストール	
4.	2.	接続	
4.	З.	ネットワークのセットアップ	
5.		アプリケーション画面	
5.	1.	起動画面	
5.	2.	CH タブ	
5.	З.	config タブ	
5.	4.	status タブ	
5.	5.	histogram タブ	
6.		初期設定	
6.	1.	電源と接続	
6.	2.	設定実行	
6.	З.	スレッショルドの設定	
6.	4.	ピーク検出モードの設定	
7.		計測	
7.	1.	設定	
7.	2.	計測開始	
7.	З.	ヒストグラムモード	
7.	4.	リストモード	
7.	5.	計測停止	
8.		終了	
9.		ファイル	
9.	1.	ヒストグラムデータファイル	
9.	2.	リストデータファイル	
10).	トラブルシューティング	
10). 1	 接続エラーが発生する。	
10). 2	2. コマンドエラーが発生する	
10). З	・ ヒストグラムが表示されない	
10). 4	· Pアドレスを変更したい	

1. 概要

1.1. 概要

テクノエーピー社製 MCA (Multi Channel Analyzer、マルチチャネルアナライザー)製品は、アナログ信号入力に 16 チャンネルを持ち、各チャンネルに高速逐次比較型 ADC を搭載した MCA です。高計数率、多チャンネルを必要とする、原子核実験、放射光実験などでの使用を目的にした製品です。

MCAには、検出器からのプリアンプ信号をスペクトロスコピアンプ(リニアアンプ)に入力し、アナロ グ回路によって増幅と波形整形(シェイピング)処理された出力信号を入力します。この信号の振幅(波 高値、ピーク値)には、放射線のエネルギー情報などが含まれています。MCAは、この信号を検出し、 最大波高値をデジタル(AD)変換しスペクトル(スペクトル)を生成する波高解析装置です。

MCAの性能を表す指標に「変換時間」があります。デッドタイムとは、MCA が波高値を計測できない時間帯のことです。放射線のように不規則に発生する事象に対し、事象発生からピーク検出から、波高値のデジタル変換、メモリ書き換え、波高値のリセットまでを実行している間は、新たな事象を計測できません。通常 MCA の変換時間は、速いもので 1 µsec と言われていますが、弊社 MCA のデッドタイムは 100nsec 以下です。

ADC に関しては、複数の入力 CH に対し 1 つの ADC で循環処理するマルチプレクサではなく、全ての 入力 CH に対し逐次比較型 ADC を搭載しています。

ピーク検出の手法としては、ピークを検出してから AD 変換する一般的な「アブソリュートモード」の他に、「ファーストピーク検出モード」があります。このモードでは、パルスピークを検出した直後に AD 変換を開始します。スペクトロスコピアンプで高速とされる 0.25 µs パルスシェイピングまでは、パルス 内で検出変換処理を終わらせることが可能です。

計測データとしては、「スペクトル」データと「リスト」データがあります。スペクトルは波高値のスペクトルです。リストは事象ごとにタイムスタンプと波高値とCH情報を出力します。計測データは、イーサネットを介してPCへ転送することができます。

アプリケーションソフトウェアは、Windows上で動作するソフトウェアが付属しております。MCA は、一般的なTCP/IPやUDP通信を使用した製品ですので、Windows以外のLinuxなどの環境でも、 同様の計測制御のプログラムを作成することができます。

本書は、本機器について説明するものです。

- ※ 文章中、信号入力のチャンネルは"CH"、ビン数を表すチャネルは"ch"と大文字小文字を区別してあります。
- ※ 文章中の、"リスト"と"イベント"は同意義です。

※ 型式の APV は VME 規格サイズの基板型を表しています。この基板型に電源を供給するためには VME 電源ラック(弊社製品 APV9007 等)が別途必要となります。また、この基板をユニット (筐体)に納め、AC 電源を直接使用できるタイプの型式には、APV の代わりに APU が付きま す。例として、VME 型 APV8216 をユニットに納めた型式は APU8216 となります。本書では APU8216 の説明も含みます。

2. 仕様

(1) アナログ入力	
・チャネル数	16CH
・入力レンジ	0から10V
・入力インピーダンス	1kΩ
・入力可能パルス幅	最小 100nsec から最大 100 µsec
・コネクタ	LEMO 社製 EPL.00.250.NTN
(2) ADC	
• 分解能	16bit
・ADC ゲイン	16384、8192、4096、2048、1024、512、256 チャネル
・スレッショルド	フルスケール 0から50% PCから設定
• LLD	フルスケール 0から100%、PCから設定
• ULD	フルスケール 0から100%、PCから設定
(3) 性能	
• 変換時間	100nsec 以下
・スループット	200kcps以上
• 分解能	1.70keV@1.33MeV(代表值)
•積分非直線性	±0.025% (typ)
• 微分非直線性	±1%(typ)
(4) 機能	
・計測モード	ヒストグラムモード、リストモード
・イベント転送レート	約 20MByte/秒。1 イベント 10Byte(80Bit)の場合
(5) 通信インターフェース	
• LAN	TCP/IP Gigabit Ethernet 1000Base-T、データ転送用
	UDP コマンド送受信用
(6) 消費電流	
※APV8216の場合、他はこ	れ以下です。
+5V	4.OA (最大)
+12V	2.0A (最大)
-12V	O.4A(最大)
(7) 形状	
•VME型(VME6U)	APV8216
・ユニット型	APU8216
(8) 外径寸法	
•VME型(VME6U)	20 (W) x 262 (H) x 187 (D) mm
・ユニット型	300 (W) x 56 (H) x 335 (D) mm
(9) 重量	
・VME型(VME6U)	約 460g

- ・ユニット型 約3360g
 (10) PC環境
 ・OS Windows 7以降、32bit 及び64bit 以降
 - ・ネットワークインターフェース
 - ・画面解像度 Full HD(1920×1080)以上推奨

3. 外観

写真 1 APV8216

(1)		P(緑色)は電源ON時点灯、V(橙色)とE(赤色)は未使用。
(2)	CHIPCHIO	ら10V、入力インピーダンスは1kΩ。
(3)	TEST	未使用。
(4)	CLK-I	外部クロック信号入力用 LEMO 社製 OO.250 互換コネクタ。外部 クロックを使用して外部機器と同期を取ることができます。使用時 は 25MHz、Duty サイクル 50%の LVTTL または TTL 信号を入 力してから電源を投入します。
(5)	CLK-O	外部クロック信号出力用 LEMO 社製 00.250 互換コネクタ。外部 機器と同期を取ることができます。25MHz、Duty サイクル 50%
(6)	GATE	外部ゲート信号入力用 LEMO 社製 OO.250 互換コネクタ。 LVTTL または TTL 信号を入力します。入力が High の間データの 取得を有効にします。
(7)	VETO	外部 VETO(ベト)信号入力用 LEMO 社製 OO.250 互換コネク タ。LVTTL または TTL 信号を入力します。High の間データの取 得を無効にします。
(8) (9)	RESET CLR	リセットボタン。3秒以上長押しで本機器をリセットします。 外部クリア信号入力用 LEMO 社製 00.250 互換コネクタ。 LVTTL または TTL ロジック信号を入力します。High の立ち上が りエッジでイベント検知時の時間情報であるカウンタデータをクリ アレます
(10)	SYNC	時間補正入力用 LEMO 社製 00.250 互換コネクタ。LVTTL または TTL 信号を入力します。計測開始時に他ボードとの時間情報クリアに使用します。
(11)	LAN	イーサネットケーブル用 RJ45 コネクタ。1000Base-T。

本機器基板上にて外部クロック使用の設定が可能です。

※注意※

下記以外の基板上ジャンパ設定は、決して変更しないでください。

写真 2 CLK 設定。左側:外部 CLK 設定、右側:内部クロック設定

(1) 橙枠 CLK 設定。外部 CLK を使用し動作させる場合は、上図右側のようにジャンパを設定し、フロントパネル CLK-1 端子へ 25MHz、Duty50%のLVTTL または TTL クロック信号を入力した状態で電源を ON にします。

4. セットアップ

4.1. アプリケーションのインストール

本アプリはWindows上で動作します。ご使用の際は、使用するPCに本アプリのEXE(実行形式)ファ イルとNational Instruments 社のLabVEW ランタイムエンジンをインストールする必要があります。 本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラに は、EXE(実行形式)ファイルとLabVEW のランタイムエンジンが含まれており、同時にインストール ができます。インストール手順は以下の通りです。

- (1) 管理者権限で Windows ヘログインします。
- (2) 付属 CD-ROM 内 Installer フォルダ内の setup.exe を実行します。対話形式でインストールを 進めます。デフォルトのインストール先は"C:¥TechnoAP"です。このフォルダに、本アプリ の実行形式ファイル APP8216.exe と設定値が保存された構成ファイル config.ini がインストー ルされます。
- (3) スタートボタン TechnoAP APP8216 を実行します。

尚、アンインストールはプログラムの追加と削除から APP8216 を選択して削除します。

4.2. 接続

本機器とPCをイーサネットケーブルで接続します。PCによってはクロスケーブルをご使用ください。 ハブを使用する場合はスイッチングハブをご使用ください。

4.3.ネットワークのセットアップ

本機器と本アプリの通信状態を下記の手順で確認します。

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。以下は変更例です。
 IPアドレス 192.168.10.2 ※本機器割り当て以外のアドレス
 サブネットマスク 255.255.255.0
 デフォルトゲートウェイ 192.168.10.1
- (2) VME ラックの電源をON にします。電源投入後 10 秒程待ちます。
- (3) PCと本機器の通信状態を確認します。Windowsのコマンドプロンプトにてping コマンドを実行し、本機器とPCが接続できるかを確認します。本機器のIPアドレスは基板上またはユニットの背面にあります。工場出荷時の本機器のネットワーク情報は以下の通りです。
 IPアドレス 192.168.10.128
 サブネットマスク 255.255.255.0
 デフォルトゲートウェイ 192.168.10.1

> ping 192.168.10.128

C:¥WINDOWS¥system32¥cmd.exe	_		×
Microsoft Windows [Version 10.0.19042.1083] (c) Microsoft Corporation. All rights reserve	d.		^
C:¥Users¥Administrator>ping 192.168.10.128			
192.168.10.128 に ping を送信しています 32 バ 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間	イトの: <1ms T1 <1ms T1 <1ms T1 <1ms T1 <1ms T1	データ: 1=32 1=32 1=32 1=32 1=32	
192.168.10.128 の ping 統計: パケット数: 送信 = 4、受信 = 4、損失 = 0 ラウンド トリップの概算時間 (ミリ秒): 最小 = Oms、最大 = Oms、平均 = Oms	(0% の持	遺失)、	
C:¥Users¥Administrator>			~

図 1 通信接続確認 ping コマンド実行

(4) 本アプリを起動します。デスクトップ上のショートカットアイコン APP8216 または Windows ボタンから APP8216 を検索して起動します。 本アプリを起動した時に、本機器との接続に失敗した内容のエラーメッセージが表示される場合 は、後述のトラブルシューティングを参照ください。

5. アプリケーション画面

5.1. 起動画面

本アプリを実行すると、以下の起動画面が表示されます。

図 2 起動画面(オプション構成や更新により画像が異なる場合があります)

•メニュー

File – open config	設定ファイルの読み込み。
File – open histogram	ヒストグラムデータファイルの読み込み。
File - save config	現在の設定をファイルに保存。
File – save histogram	現在のヒストグラムデータをファイルに保存。
File - save image	本アプリ画面を PNG 形式画像で保存。
File – reconnect	再接続。
File - quit	本アプリ終了。
Edit – copy setting of CH1	CH タブ内の CH1 の設定を他の全 CH の設定に反映。
Edit – copy setting of CH1 to all modules	CH タブ内の CH1 の設定を他の全モジュール全 CH の設定に反映。

Edit - IP configuration 本機器のIP アドレスを変更。

取扱説明書 APV8216

Config	本機器へ全項目を	設定。	
Clear	本機器内のヒストグラムデータを初期化。		
Start	本機器へ計測開始。		
Stop	本機器へ計測停止		
・タブ			
CH	各入力CHに関す	する設定。	
config	入力CH以外の語	定及び保存や計測に関する設定。	
status	各CHの計数率や	b各 ROI 間の計算結果を表示。	
histogram	ヒストグラム表示	、ROI(Region Of Interest)の設定。	
module	計測対象とする機	器を選択。	
IP address	IP アドレス。構成ファイルにて定義し、module で選択した DSP の IP アドレ		
	スを表示。		
memo	任意テキストボッ	ックス。計測データ管理用にご使用ください。	
mode	動作モードです。	以下のモードから選択します。	
	histogram	ヒストグラムモード。プリアンプ出力信号の波高値(SLOW	
		系フィルタの波高値)を最大8192のchに格納し、横軸エ	
		ネルギー、縦軸カウントのヒストグラムを取得します。	
	list	リストモード。プリアンプ出力信号のタイムスタンプと波高	
		値と CH 番号を 1 つのイベントデータとして、連続的に PC	
		ヘデータを転送します。	
measurement time(sec	》 計測時間。設定	定範囲は 00:00:00 から 48:00:00 です。	
acq. LED	計測中に点滅。		
save LED	データ保存中に点	彩威。	
error LED	エラー発生時点以	J。	
mode	動作モード、設定	空山動作モード名称を表示。	
measurement time	設定した計測時間		
real time	有効先頭CHの	 Jアルタイム(実計測時間)。計測終了時measurement time	
	と等しくなります		

list file size(byte) イベントデータの保存中のファイルの容量(Byte)を表示。

5. 2. CHタブ

СН	con	fig	status				
ON	th	reshok	ADC d gain	LLD	ULD	peak det mode	offset
CH1	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🗘
CH2	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🜩
CH3	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🜩
CH4	: 1	00 ≑	16384 🗸	100	16380 🗢	abs 🗸	0 🜩
CH5	: 1	00 ≑	16384 🗸	100	16380 🗢	abs 🗸	0 🜩
CH6	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🜩
CH7	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🜩
CH8	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🜩
CH9	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🜩
CH10	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🜩
CH11	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🗢
CH12	: 1	00 ≑	16384 🗸	100 🖨	16380 🖨	abs 🗸	0 🗢
CH13	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🗢
CH14	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🗢
CH15	: 1	00 ≑	16384 🗸	100 🖨	16380 🗢	abs 🗸	0 🗢
CH16	: 1	00 ≑	16384 🗸	100 🗎	16380 🗢	abs 🗸	0 🖨

図 3 CHタブ

ON CH 使用可否。

- threshold 波形取得開始のタイミングのスレッショルド(閾値)を設定します。単位はdigitです。
 設定範囲は 0 から 16383 です。後述の LLD 以下の値に設定します。波形整形入力信
 号がスレッショルドの設定値を超えたタイミングからピーク検出及び AD 変換のトリガ となります。この設定をあまりに大きい値に設定すると、低エネルギーの波高値を取得 できなくなります。逆に設定が小さ過ぎるとノイズをひろってしまいます。ADC gain が 16384 の場合などは、はじめは threshold と LLD を 100 くらいで設定します。
 throughput rate とヒストグラムを見ながら少しずつ下げていき、値が増えるノイズと の境目を判別し、その少し上の値をスレッショルドとします。
 ADC gain ADC のゲイン (チャネル)。16384、8192、4096、2048、1024、 512、256 チャネル(ch)から選択します。histogram グラフの横軸の分割数になります
 LLD エネルギーLLD (Lower Level Discriminator)。単位は ch です。この閾値より下の
- ch はカウントしません。 ULD より小さい値に設定します。
- ULD エネルギーULD(Upper Level Discriminator)。単位は ch です。この閾値より上の ch はカウントしません。LLD より大きく、ADC ゲインより小さい値に設定します。

図 4 LLDとULDの設定例

- ※ 上図はLLDを955、ULDを1045に設定した例です。LLDより小さい部分とULDより大きい 部分が計測されないことが分かります。
- peak det mode ピーク(最大波高値)の検出方法として、abs または fast を選択します。詳細 は後述の「ピーク検出モードの設定」を参照ください。 abs アブソリュートモード threshold を超えてからピークに到達し減衰していき threshold を下 回った時に AD 変換を実行します。より確定的に最大波高値を取得可 能。 fast ファストモード

最大波高値を常に監視し到達直後に AD 変換を実行します。高計数時の計測用です。

offset

プラス方向のオフセットを指定します。単位はchです。

5. 3. config タブ

CH config status		
device number of CH 16 list read size(byte) 10000	file histogram save histogram file path C:¥Data¥test.csv	list save Ist file path C:¥Data¥test.bin Ist file number file name 0 Ist file number

図 5 config タブ

• device 部

number of CH	本機器のCH 数です。 本機器にあった CH 数を表示します。
list read size(byte)	リストモード時の最小読み込みデータ長。単位はByte。通常は10000に設定
	します。高カウントレート時は 20000Byte として PC 側で多くのイベントを
	受信できるようにします。低カウントレート時に設定を下げて少ない数でイベ
	ントを受信できるようにします。

• file 部

histogram save	計測終了時に histogram タブに表示されているヒストグラムデータをファイル
	に保存します。ファイルの保存先は後述のフォーマットになります。
	histogram モード時のみ有効です。
histogram file path	ヒストグラムデータファイルの絶対パスを設定。拡張子無しも可能です。
	※注意※
	このファイル名で保存されるのではなく、このファイル名をもとにして以下のフォ
	ーマットになります。
	例:histogram file path にC:¥Data¥histogram.csv と設定し、日時が
	2010/09/01 12:00:00の場合は、
	C:¥Data¥histogram_20100901_120000.csv というファイル名でデー
	タ保存を開始します。
list save	リストデータをファイルに保存するか否かを設定します。リストモード選択時
	のみ有効です。
list file path	リストデータファイルの絶対パスを設定。拡張子無しも可能です。
	※注意※
	このファイル名で保存されるのではなく、このファイル名をもとにして以下の
	フォーマットになります。
	例:list file path にC:¥Data¥list_bin と設定し、後述のlist file number が
	0 の場合は、C:¥Data¥list_000000.bin というファイル名でデータ保存 を開始します

list file number	リストデータファイルに付加される番号の開始番号を設定します。 0 から
	999999 まで。 999999 を超えた場合 0 にリセットされます。
file name	list file path とlist file number を元に実際に保存される時にファイル名を表示
	します。

5. 4. status タブ

СН	cont	tig status													
_ CH				ROI											
CH		throughput	throughput	ROI	peak (ch)	centroid	peak (resurt)	gross (gross	gross	net (count)	net	FWHM	FWHM	FWHM	FWTM
140.		count	rate(cps)		(cn)	(cn)	(count)	(count)	(cps)	(count)	(cps)	(cn)	(70)		
CH	1 :	0.000	0.000	ROI1 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	2:	0.000	0.000	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	3 :	0.000	0.000	ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	4 :	0.000	0.000	ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	5:	0.000	0.000	ROI5 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	5 :	0.000	0.000	ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	7 :	0.000	0.000	RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	8 :	0.000	0.000	ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	ə :	0.000	0.000	RO19 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	10 :	0.000	0.000	ROI10 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	11 :	0.000	0.000	ROI11 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	12 :	0.000	0.000	ROI12 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	13 :	0.000	0.000	ROI13 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	14 :	0.000	0.000	ROI14 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	15 :	0.000	0.000	ROI15 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH	16 :	0.000	0.000	ROI16 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
_		01000													

図 6 status タブ

•CH部

CH 毎の状況を表示します。

throughput count	入力に対し処理した数。
throughput rate(cps)	1 秒間の入力に対し処理した数。

• ROI部

ROI間の算出結果を表示します。

peak(ch)	最大カウントのch。
centroid(ch)	全カウントの総和から算出される中心値(ch)。
peak(count)	最大カウント。
gross(count)	ROI間のカウントの総和。
gross(cps)	gross(count)÷計測経過時間。
net(count)	ROI間のバックグラウンドを差し引いたカウントの総和。
net(cps)	net(count)÷計測経過時間。
FWHM(ch)	半値幅(ch)。
FWHM(%)	半値幅(%)。半値幅:ROI定義エネルギー×100。
FWHM	半値幅。
FWTM	1/10幅。

5. 5. histogram タブ

図 7 histogram タブ

グラフ	ヒストグラムグラフ。config タブ内 mode にて histogram を選択した場合、					
	計測中にエネルギーヒストグラムを表示します。					
凡例チェックボックス	グラフにひ	1毎のヒストグラムを表示するか否かの選択。				
ROICH	ROI (Regio	ROI (Region Of Interest) を適用する CH 番号を選択します。1 つのヒスト				
	グラムに対け	グラムに対し最大 16 の ROI を設定可能です。				
ROI start	ROI の開始	立置。単位は後述 calibration で選択した単位です。				
ROI end	ROI の終了(立置。単位は後述 calibration で選択した単位です。				
energy	ピーク位置(ch)のエネルギー値の定義。 ⁶⁰ Co の場合、1173 や 1332(keV)				
	と設定。後近	述の calibration にて ch を選択した場合、ROI 間のピークを検出し				
	そのピーク	立置(ch)と設定したエネルギー値から keV/ch を算出し、半値幅の				
	算出結果に	適用します。				
calibration	X軸の単位。	設定に伴いX軸のラベルも変更されます				
	ch	ch(チャネル)単位表示。ROIの FWTM の FWHM などの単位				
		は任意になります。				
	eV	eV単位表示。1 つのヒストグラムにおける2種類のピーク(中心				
		値)とエネルギー値の2点校正により、chがeVになるように1				
		次関数y=ax+bの傾きaと切片bを算出しX軸に設定します。ROI				
		のFWTMのFWHMなどの単位はeVになります。				
	keV	keV 単位表示。1 つのヒストグラムにおける 2 種類のピーク (中				
		心値)とエネルギー値の2点校正により、ch が keV になるよう				
		に 1 次関数 y=ax+b の傾き a と切片 b を算出し X 軸に設定しま				
		す。 ROI の FWTM の FWHM などの単位は keV になります。				
		例:5717.9chに ⁶⁰ Coの1173.24keV、6498.7chに ⁶⁰ Co				
		の1332.5keVがある場合、2点校正よりaを0.20397、bを				
		6.958297 と自動算出します。				
	manual	1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任意に設定し				

株式会社テクノエーピー

取扱説明書 APV8216

<m

	X軸に設定します。単位は任意に設定します。
Y mapping	グラフのY 軸のマッピングを選択します。 設定に伴いY 軸のラベルも変更され
	ます。
	linear 直線
	log 対数
smoothing	統計が少ない場合に半値幅を計算するためのスムージング機能です。
X axis calibration	X軸の単位を選択します。
Y axis calibration	Y 軸の単位を選択します。
X 軸範囲	X 軸上で右クリックして自動スケールをチェックすると自動スケールになりま
	す。 チェックを外すと自動スケールでなくなり、X 軸の最小値と最大値が固定
	になります。最小値または最大値を変更する場合は、マウスのポインタを変更
	する数値の上に置き、クリックまたはダブルクリックすることで変更できます
く 軸範囲	Y 軸上で右クリックして自動スケールをチェックすると自動スケールになりま
	す。チェックを外すと自動スケールでなくなり、 Y 軸の最小値と最大値が固定
	になります。最小値または最大値を変更する場合は、マウスのポインタを変更
	する数値の上に置き、クリックまたはダブルクリックすることで変更できます。
-+-	カーソル移動ツールです。ROI 設定の際、グラフ上のカーソルをマウスでドラ
	ッグして移動できます。
•,⊕	ズーム。 クリックすると以下の 6 種類のズームイン及びズームアウトを選択し
	実行できます。

図8 グラフ ズームイン及びズームアウトツール

- (1)四角形 ズームこのオプションを使用して、ズーム領域のコ ーナーとするディスプレイ上の点をクリックし、四 角形がズーム領域を占めるまでツールをドラッグし ます。 (2) X-ズーム
- X軸に沿ってグラフの領域にズームイン
- (3) Y-ズーム Y軸に沿ってグラフの領域にズームイン
- (4) フィットズーム 全ての X 及び Y スケールをグラフ上で自動スケール
- (5) ポイントを中心にズームアウト ズームアウトする中心点をクリックします。
- (6)ポイントを中心にズームインズームインする中心点をクリックします。
- パンツール。プロットをつかんでグラフ上を移動可能です。

6. 初期設定

6.1. 電源と接続

- (1) 全ての機器の電源をOFF にします。
- (2) フロントパネル上LAN コネクタとPC をLAN ケーブルで接続します。
- (3) スイッチングハブを使用の場合はONにします。
- (4) PCの電源をONにします。
- (5) 本機器の電源をONにします。
- (6) フロントパネル上のCH1 端子とプリアンプ出力信号を接続します。

6.2. 設定実行

- (1) 本アプリを起動します。
- (2) メニュー Config をクリックし、全設定を行います。

6.3. スレッショルドの設定

スレッショルドの設定は以下の2つに影響します。

- ・この閾値を超えたタイミングでタイムスタンプします。タイムスタンプされた情報は list データに反映 されます。
- ・この閾値を超えた時から AD 変換及びピーク検出を開始します。

この設定をあまりに大きい値に設定すると、低エネルギーの波高値を取得できなくなります。逆に設定が 小さ過ぎるとノイズをひろってしまいます。

はじめ10から20の値を設定し、スペクトルを見ながらノイズとの境目を判別します。設定はLLD以下とします。

6. 4. ピーク検出モードの設定

最大波高値の検出方法として、config タブ内 peak detect にて abs または fast を選択します。

abs はアブソリュートモードで、threshold を超えてからピークに到達し減衰していき threshold を下回った時に AD 変換を実行します。より確定的に最大波高値を取得可能です。

fast はファストモードで、最大波高値を常に監視し到達直後に AD 変換を実行します。高計数時の計測用です。

7. 計測

7.1.設定

- (1) メニュー Config をクリックして全設定を本機器へ送信します。実行後、DSP 内ヒストグラムデ ータが初期化されます。
- (2) 前回の計測したヒストグラムや計測結果を初期化する場合はメニュー Clear をクリックします。 初期化せずにヒストグラムデータを継続する場合は、メニュー Clear をクリックせずに次の計測 を開始します。

7.2. 計測開始

メニュー Start をクリックします。計測が開始され、下記が実行されます。

- CH部にCH毎の計測状況が表示されます。
- acq LED が点滅します。
- measurement time に計測設定時間が表示されます。
- real time に本機器から取得した経過時間が表示されます。

7.3. ヒストグラムモード

config タブ内 mode で histogram を選択して計測を開始した場合、下記が実行されます。

- mode に histogram と表示されます。
- ROI部にROI毎の計算結果が表示されます。
- histogram タブにヒストグラムが表示されます。

図 10 histogram モード計測

7.4. リストモード

config タブ内 mode で list を選択して計測を開始した場合、下記が実行されます。

- mode に list と表示されます。
- save LED が点滅し、list file size(byte)に現在保存中のファイルサイズが表示されます。

7.5. 計測停止

- real time が measurement time に 到達すると計測は終了します。
- ・ 計測中に停止する場合は、メニュー Stop をクリックします。実行後計測を停止します。
- save LED が消灯します。
- real time の更新が停止します。
- list file size(byte)の更新が停止します。

8. 終了

メニュー File - quit をクリックします。確認ダイアログが表示された後、quit ボタンをクリックすると 本アプリは終了し、画面が消えます。次回起動時は、終了時の設定が反映されます。

9. ファイル

9.1. ヒストグラムデータファイル

- (1) ファイル形式カンマ区切りのCSV テキスト形式
- (2) ファイル名任意
- (3)構成
 Header 部とCalculation 部とStatus 部とData 部からなります

数の総和
数の

FWHM(%)	ROI 間の半値幅			
FWHM	ROI間の半値幅			
FWTM	ROI間の1/10幅			
[Status]				
※以下 CH 毎に保存				
throughput count	スループットカウント			
throughput rate	スループットカウントレート			
[Data]				
各チャンネルのヒストグラムデータ。 最大 16384 点。				

9.2. リストデータファイル

(1) ファイル形式

バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式

(2) ファイル名

config タブ内 list file path に設定したファイルパスに、file number を0詰め6桁付加したものにな ります。例えば、list file path に D.¥data¥123456.bin、file number に 1 と設定した場合、 D.¥data¥123456_000001.bin です。

list file size に到達すると、保存中のファイルを閉じます。その後、list file number を自動で1つ繰り 上げ新しいファイルを開き、データのファイル保存を継続します。

(3) 構成

1イベントあたり 80bit(10Byte、5WORD)

Bit79							64	
	real time[47.32]							
63								
	real time[31.16]							
47							32	
	real time[15.0]							
31			24	23	20	19	16	
		空き		unit[30]		CH[30]		
15 14	13						0	
空き PHA[13.0]								

図 12 list データフォーマット

- ・ Bit79からBit32 real time。48Bit。1Bit あたり10ns。
 - 最大計測時間は約32時間(32日≒2⁴⁸ * 10ns)。
- Bit31からBit24 空き。
- Bit23からBit20 unit。ユニット番号。4Bit。ユニット1は0、ユニット16は15。
- Bit19からBit16 CH。チャンネル番号。4Bit。CH1は0、CH16は15。
- Bit15からBit14 空き。
- Bit 13 から Bit O PHA (波高値)。 ADC gain が最大 16384 の場合は 14Bit。

10. トラブルシューティング

10.1. 接続エラーが発生する。

起動時またはメニュー config にて connection error エラーがする場合、ネットワークが正しく接続されていない可能性があります。この場合、以下を確認します。

- 記動前の構成ファイル configini内 IPが 192.168.10.128 と設定され、[System] セクション (1)の各ポート番号が下記のとおり定義されており、本アプリを起動してIP Address の表示が同じ あることを確認します。 [System] PCConfigPort = 55000 PCStatusPort = 55001 PCDataPort = 55002 DevConfigPort =4660 DevStatusPort = 5001 DevDataPort = 24 SubnetMask = "255.255.255.0" Gateway = "192.168.10.1" (2) PCのネットワーク情報が本機器と接続できる設定かどうかを確認します。本機器のデフォルト設 定は以下の通りです。 IP アドレス 192.168.10.128 サブネットマスク 255,255,255,0 デフォルトゲートウェイ 192,168,10,1 (3) UDP 接続用の PC 側の任意ポート番号が競合している。この場合は起動前の構成ファイル configini内 Port に別の番号を定義します。
- (4) イーサネットケーブルが接続されている状態で電源をONにします。
- (5) コマンドプロンプトにて ping コマンドを実行し本機器と PC が通信できるかを確認します。
- (6) 本機器の電源を入れ直し、再度 ping コマンドを実行します。
- (7) ウィルス検出ソフトやファイヤーフォールソフトをOFF にします。
- (8) PCのスリープなどの省電力機能を常にONにします。
- (9) ノートPCなどの場合、無線LAN機能を無効にします。

10.2. コマンドエラーが発生する

オプションの有無などによる、本機器のファームウェアとアプリケーションの組み合わせがあっていない 場合があります。弊社までお問い合わせください。

10.3. ヒストグラムが表示されない

メニュー Start を実行しても histogram タブのグラフに何も表示されない場合、以下の点を確認します。

- (1) histogram タブ内 plot ON にて CH1 を ON に設定します。
- (2) input total rate(cps)とthroughput rate(cps)がカウントしているか確認します。
- (3) DAC monitor CHをCH1 に、DAC monitor typeをpre amp にして、preamp の波高が小 さすぎたり大きすぎたりせず、1V 以内位出ているかを確認します。
- (4) DAC monitor type を fast にして FAST 系フィルタの信号が出力されているかを確認します。
- (5) DAC monitor type を slow にして SLOW 系フィルタの信号が出力されているかを確認します。
- (6) fast trigger threshold や slow trigger threshold の値が小さすぎたり大きすぎたりせず、 input total rate(cps)と throughput rate(cps)のカウントを見ながら、100 から 30 くらいま で設定を下げながら変更していき、2 つの rate が近いカウントになるように調整します。
- (7) グラフのX軸とY軸を右クリックしてオートスケールにします。

10.4. Pアドレスを変更したい

別添の「取扱説明書 APG5107 搭載製品 IP アドレス変更方法」を参照してください。添付無き場合は弊社までお問い合わせください。

取扱説明書 APV8216

株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL.:029-350-8011 FAX.:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com