スタンドアロンマルチチャンネルアナライザ APU504

取扱説明書

第1版 2018年6月

株式会社 テクノエーピー 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail : order@techno-ap.com

一目 次一

1.		安全上の注意・免責事項3
2.		概要4
2.	1	概要
2.	2	仕様
3		外観
4		ソフトウェア
4.	1	CHタブ11
4.	2	advanced タブ13
4.	3	config タブ16
4.	4	histogram タブ
5		準備及び調整方法
5.	1	計測の流れ
5.	2	デジタルパラメータの調整
5.	3	外部入力端子による信号処理
5.	4	ROI-SCA 機能の説明
5.	5	半値幅 FWHM(Full Width at Half Maximum)の計算方法
5. 6	5	半値幅 FWHM(Full Width at Half Maximum)の計算方法
5. 6 6.	5 1	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6 6. 6.	5 1 2	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6 6. 6.	5 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6 6. 6. 7	5 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6. 6. 7 7.	5 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6. 6. 7 7. 8	5 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法
5. 6. 6. 7 7. 8 8.	5 1 2 3 1	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 火フト終了 38 ファイル 39 ヒストグラムデータファイル 39
5. 6. 6. 7. 8. 8.	5 1 2 3 1 1 2	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 終了 38 ソフト終了 38 ファイル 39 ヒストグラムデータファイル 39 リストデータファイル 42
 5. 6. 6. 7. 8. 8. 8. 	5 1 2 3 1 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 火フト終了 38 ファイル 39 ヒストグラムデータファイル 39 リストデータファイル 42 quick scan モードデータファイル 43
5. 6 6. 6. 7 7. 8 8. 8. 8. 9	5 1 2 3 1 1 2 3	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 火フト終了 38 ファイル 39 レストグラムデータファイル 39 リストデータファイル 42 quick scan モードデータファイル 43 その他 44
5. 6. 6. 7 8. 8. 8. 9.	5 1 2 3 1 1 2 3 1	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 火了 38 ファイル 39 リストデータファイル 39 リストデータファイル 42 quick scan モードデータファイル 43 その他 44 ソフトウェアのインストール 44
 5. 6. 6. 7. 8. 8. 9. 9. 	5 1 2 3 1 2 3 1 2 3 1 2	半値幅 FWHM (Full Width at Half Maximum)の計算方法 35 計測 36 初期化設定 36 計測開始 36 計測停止 38 終了 38 ソフト終了 38 ファイル 39 ヒストグラムデータファイル 39 リストデータファイル 42 quick scan モードデータファイル 43 その他 44 火フトウェアのインストール 44

1. 安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下「弊社」)のデジタルスペクトロメーターAPU504(以下本装置)をご購入いた だき誠にありがとうございます。本装置をご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守 りいただき、正しくご使用ください。

本装置のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、故障に対する損害、 その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

🚫 禁止事項

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はできません。
- 強い衝撃や振動を与えないでください。
- 分解、改造はしないでください。
- ・ 水や結露などで濡らさないでください。濡れた手での操作もおやめください。
- 発熱、変形、変色、異臭などがあった場合には直ちにご使用を止めて弊社までご連絡ください。

- 本装置の使用温度範囲は室温とし、結露無いようにご使用ください。
- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- 本装置は高精度な精密電子機器です。静電気にはご注意ください。
- 本装置は、ほこりの多い場所や高温・多湿の場所には保管しないでください。
- 携帯電話やトランシーバー等、強い電波を出す機器を近づけないでください。
- 電気的ノイズの多い環境では誤作動のおそれがあります。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

2. 概要

2.1 概要

スタンドアロンマルチチャンネルアナライザ APU504 は、4CH のマルチチャネルアナライザ(MCA)です。リア ルタイムデジタルシグナルプロセッシング機能(DSP)を搭載しているため、アナログ回路による波形整形処理が不要に なり、非常に高速な A/D コンバータを利用して、プリアンプからの信号を直接デジタルに変換し FPGA によるパイ プラインアーキテクチャによって、リアルタイムに台形フィルタ(Trapezoidal Filter)処理されます。これにより非 常に優れたエネルギー分解能と時間分解能を提供し、高い計数率(100kcps 以上)でも抜群の安定感を持ちます。

本装置はパーソナルコンピュータ(以下 PC)と LAN ケーブルにより接続し、付属のアプリケーション「DSP MCA」(以下本アプリ)を使用することでパラメータの設定やデータの読み出し、計測したデータの解析及び取込み 等ができます。

本書は、本装置と本アプリの取り扱いについて記載したものです。

※本書の記載内容は予告なく変更することがあります。

改定履歴

2018年06月 第1版 初版

2.2 仕様

項目	住 様							
型式	APU504							
アナログ入力	4CH ±2V レンジ、入力インピーダンス:約 1kΩ							
アナログゲイン	Coarse Gain x2, x4, x10, x20、 Fine Gain x0.5~x1.5 (ソフトウェアにて調整可)							
サンプリング	100MSPS、分解能14Bit[フルスケール(±2V にて)]							
ADC Gain	4096、2048、1024、512、256ch							
	Trapezoidal Filter: 0.1 \sim 10us							
デジタリショ	Fine Gain : x0.333 \sim x1.0							
ノンシル処理	Baseline Restorer							
	Pileup Rejecter							
プリアンプ電源	±12V, ±24V (NIM 規格準拠)							
通信	イーサネット TCP/IP、ギガビットイーサ							
寸法	210(W) x45(H) x275(D)							
重量	約1.7kg							
	+6V:1500mA +12V:200mA-12V:100mA							
消費電力	ただし、プリアンプ電源の消費電流は含みません							
	※本体部の電力はデジタル回路用電源の選択により必要な電圧及び電流が変わります							
アプリケーション	Microsoft 社製 Windows 7 以降 32Bit 推奨、							
動作環境	画面解像度 XGA(1024×768)以上							
付属品	本体、アプリケーション、取扱説明書							

表 1 APU504 仕様

3 外観

図1 APU504(上:フロントパネル、下:リアパネル)

(1)	LED	: MS(赤) マスターモード時に点灯します。DET(橙) 測定中にアナログ信号パルスを
		検出した際に品灯します。PWR(線)電源フノノ。本機器に電源が投入される品灯 します。
(2)	Reset	:リセットボタン。設定やデータの読み出しなどトラブルで通信ができなくなってしまっ
		た場合の、イーサネット接続復旧用ボタンです。ハードウェア的にイーサネットの再接続
		(リンクアップ処理)が必要な場合に使用します。
(3)	CH1~CH4	: プリアンプ信号入力用LEMO コネクタ。入力可能な電圧範囲は±2V(Z _N : 約 1kΩ)で す。
(4)	PZ	: ポールゼロキャンセル調整ボーリュームです。内蔵のアナログ微分回路のポール
		調整を行います。トランジスタリセット型検出器仕様の製品では調整不要です。
(5)	MON :	DSP 内部処理波形出力用 LEMO コネクタ。出力可能な電圧範囲は±2V(1MΩ終端時)。
(6)	AUX1~AUX4	: ROI-SCA 機能出力信号(3.3V LV-TTL 信号)LEMO コネクタ。
(7)	CLR	:アブソリュートカウンタクリア信号入力用LEMO コネクタ。50ns 以上の High レベル
		信号を入力するとアブソリュートカウンタをクリアします。レベルセンス動作となります。
		この端子は内蔵 10kΩの抵抗によりグランドに接続されています。
(8)	CLK-I	:外部クロック入力用 LEMO コネクタ。内部デジタル回路を外部クロックに同期
		して動作させる場合に使用します。周波数 25MHz、Duty サイクル 50%の矩形
		波を入力してください。
(9)	QSG	:Quick Scan 用外部ゲート信号入力用LEMO コネクタ。TTL ファンアウトモジュール
		からの TTL ゲート信号を入力します。最小周期は 10ms で、High レベルが 10ms 続
		き、その後Low レベルが最短10 µs となり、これを1 周期とします。最大周期は
		8000 です。 Quick Scan モードでの動作中は、ネガティブエッジを検出し、ヒストグ
		ラムメモリの切り替えを行います。
(10)	GATE	:GATE 信号入力用 LEMO コネクタ。この入力端子が High レベルの期間は内蔵デジタ
		ルシグナルプロセッサーのピークディテクトが有効となります。レベルセンス動作となり
		ます。この端子は内蔵 10kΩの抵抗により回路デジタル電源 3.3V に接続されています。

スタンドアロンマルチチャンネルアナライザ APU504 取扱説明書

- (11)LAN :イーサネットケーブルを接続します。ギガビットイーサ対応です。
- (12) F.G : 筐体アース接続用端子。(通常は未使用で可。ご使用の環境の電気配線によっては検出器 筐体などと接続することでノイズ低減が期待できる場合がございます)
- (13) MS
 :マスター/スレーブ切替スイッチ。デフォルトはマスターモード。スレーブモードに設定 するとマスターに対して動作タイミングの同期を取ることが可能になります。オプション 機能であり、別途ケーブルも必要になります。M マスターモード時、S スレーブモード 時。マスターモード選択時はフロントパネルのMS LED が赤色に点灯します。
- (14) PREAMP
 : プリアンプ電源供給用 Dsub コネクタ。NIM 規格準拠のピン割り付けにて±12V, ± 24V を供給可能です。

4 ソフトウェア

※ソフトウェアのインストール方法は、後述「9.1.ソフトウェアのインストール」を参照ください。

- J.	DSP1	r IP add	iress 192.10	68.10.128			memo	Test								acq.	save	error	mode	histogram
i	input total count	throughput count	input total rate(cps)	throughput rate(cps)	pileup rate(cps)	dead time ratio(%)	ROI ROI No.	peak (ch)	centroi (ch)	d peak (coun	t) (cou	ss gros nt) (cps	s net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
i.	0.000	0.000	0.000	0.000	0.000	0.0	ROI1 :	0	0.0	0 0.00	0 0.	0.0 0.0	00 0.000	0.000	0.0	0.000	0.000	0.000	measuremen time	24:00:00
	0.000	0.000	0.000	0.000	0.000	0.0	RO12 :	0	0.0	0.00	0 0.	0.0 0.0	00 0.000	0.000	0.0	0.000	0.000	0.000	real time	00:00:00
	0.000	0.000	0.000	0.000	0.000	0.0	ROI3 :	0	0.0	0 0.00	0 0.	0.0	0.000	0.000	0.0	0.000	0.000	0.000	quick scan meas count	0
	0.000	0.000	0.000	0.000	0.000	0.0	ROI4 :	0	0.0	0 0.00			0000	0.000	0.0	0.000	0.000	0.000	list file size	0.00
							ROI6 :	0	0.0	0 0.00	0 0.	00 0.0	0.000	0.000	0.0	0.000	0.000	0.000	(byte)	
							ROI7 :	0	0.0	0.00	0 0.	0.0 0.0	00 <mark>0.00</mark> 0	0.000	0.0	0.000	0.000	0.000		
							RO18 :	0	0.0	0.00	0 0.	0.0 0.0	000.00	0.000	0.0	0.000	0.000	0.000		
c	onfig h	istogram																		
: :	x5 • x5 • x5 • x5 • 1.0-	4096 • 50 4096 • 50 4096 • 50 4096 • 50 4096 • 50	0 0 500 0 0 500 0 0 500 0 0 500		64 🔷 64 💠 64 💠 64 💠	40 45 40 45 40 45 40 45 40 45 40 45 40 45 40 45	4000 4000 4000 4000 4000 4000 4000	* x3 * x3 * x3 * x3	2 • 2 • 2 • 2 •	0.5002 . 0.5002 . 0.5002 .	7							CH1	DAC mor	itor CH
60	0.0m-																	CH2 CH3		
40	0.0m-																	CH4	DAC mo	nitor type
20	0.0m-																			
	0.0-																		-Y mappi	ng
-20	0.0m-																		Ine	r
-40	0.0m-																		log log	
-60	0.0m-																			
~~	0.0m-																			
-80											1	111								

図 2 起動画面

メニュー

File, Edit, Config, Clear,	Start、Stopから構成される。
File-open config	:設定ファイルの読み込み
File-open histogram	:ヒストグラムデータファイルの読み込み
File-save config	:現在の設定をファイルに保存
File-save histogram	:現在のヒストグラムデータをCSV 形式ファイルに保存
File-save image	:画面のキャプチャー画像をファイルに保存(PNG 形式)
File-quit	:本ソフト終了
Edit-copy setting of CH1	:CH1の設定をCH2以降の設定にコピー
Edit-IP configuration	: IP アドレス、サブネットマスク、デフォルトゲートウェイの設定
Config	:本装置へ全設定を送信
Clear	:本装置のヒストグラムデータ・real time を初期化
Start	:本装置へ計測開始を送信
Stop	:本装置へ計測停止を送信

・タブ

CH, advanced, d	xonfig、histogram から構成される。
CH	: 本装置の DSP の CH に関する設定
advanced	:本装置のDSPのCHに関するより詳細な設定
config	:本装置の計測動作や計測時間等に関する設定
histogram	:ROI(Region Of Interest)及びエネルギー校正に関する設定

・タブ以外

システムのステータス情報を表示する。

Module	:本装置を複数台使用する場合に、制御対象装置の選択に使用
IP address	:本装置のPアドレス
Memo	:任意テキストボックス。計測データ管理用にご使用ください
acq.LED	:計測中に点滅
saveLED	:データ保存時に点灯
errorLED	:エラー発生時点灯
mode	:モード。「histogram」などモードの設定状態を表示
measurement mode	:計測モード。「real time」もしくは Nive time を表示
measurement time	:設定した計測時間
real time	:リアルタイム(実計測時間)
quick scan meas count	:クイックスキャン計測のデータ読み込み回数
list file size(byte)	:イベントデータの保存中にファイルの容量(Byte)を表示します

・CH部

計測中の計数率等を表示する。

input total count	:トータルカウント。入力のあったイベント数
throughput count	:スループットカウント。入力に対し処理された数
input count rate(cps)	:カウントレート。1 秒間に入力のあったイベント数
throughput count(cps)	:スループットカウントレート。1 秒間の入力に対し処理された数
pileup rate(cps)	:パイルアップカウントレート。1 秒間のパイルアップカウント数
dead time ratio(%)	: デッドタイムの割合(%)

•ROI部

ROI 間の計算結果を表示する。	
peak(ch)	: 最大カウントの ch
centroid(ch)	:カウントの総和から算出される中心値(ch)
peak(count)	:最大カウント
gross (count)	:ROI間のカウントの総和
gross (cps)	:1 秒間の ROI 間のカウントの総和
net(count)	:ROI間のバックグラウンドを差し引いたカウントの総和
net(cps)	:1 秒間の ROI 間のバックグラウンドを差し引いたカウントの総和
FWHM(ch)	:半値幅(ch)
FWHM(%)	: 半値幅÷ROI 設定エネルギー×100(%)
FWHM(任意単位)	:半値幅。後述の「5.5 半値幅 FWHM (Full Width at Half
	Maximum)の計算方法」を参照。単位はエネルギー校正の状態による。
FWTM(任意単位)	:1/10 幅。半値幅がピークの半分の位置であるのに対し、ピークから
	1/10(ピークの裾野)の幅。単位はエネルギー校正の状態による。

4.1 CHタブ

ON	: CH 使用可否。本装置は CH1,CH2,CH3,CH4 を ON でご使用ください。
ADC gain	: ADC のゲイン。4096(デフォルト), 2048, 1024, 512、256 チャネル(ch)から
	選択。
analog coarse gain	: 本装置アナログ回路のコースゲイン。 X5(デフォルト), x10, x20 から選択。
fast trigger threshold	: FAST 系フィルタを使用した時間情報取得タイミングの閾値を設定します。単位は
	digit。設定範囲は0から4095です。「input total rate(cps)」レートを見ながら、
	極端に数値が増えるノイズレベルの境目より数 digit 高めに設定します。 デフォルト設
	定は 200digit。
slow rise time(ns)	: SLOW 系フィルタのライズタイムの設定。デフォルト設定は 500ns (アナログアン
	プのシェイピングタイム0.25μ相当)。
slow flat top time(n s)	: SLOW 系フィルタのフラットトップタイムの設定。デフォルト設定は 100ns。
slow pole zero	: SLOW 系ポールゼロキャンセルを設定します。 デフォルト設定は 115。
slow threshold	: Slow 系フィルタを使用した波形取得開始のタイミングの閾値を設定。単位は digit。
	設定範囲は0から8191。LLD以下の値に設定します。「throughput rate(cps)」
	を見ながら、極端に数値が増えるノイズレベルの境目より数 digit 高めに設定します。
	デフォルト設定は 150digit。

LLD	:	エネルギー	LLD(Lower Level Discriminator)を設定します。単位は ch。この閾値
		より下のch	nはカウントしません。show threshold 以上かつ ULD より小さい値に設
		定します。	
ULD	:	エネルギー	ULD(Upper Level Discriminator)を設定します。単位は ch。この閾
		値より上の	ch はカウントしません。LLD より大きく、ADC ゲインより小さい値に
		設定します。	
digital coarse gain	:	デジタルの	コースゲイン。x1, x2, x4(デフォルト), x8, x16, x32, x64, x128 から選
		択。	
digital fine gain	:	デジタルの	ファインゲイン。 設定範囲は x0.3333 ~ x1 です
inhibit width(μ s)	:	トランジス	タリセット型プリアンプ用インヒビット信号の時間幅を内部にて設定。
		設定範囲は	0 ~ 163μs。デフォルトは15μsec です。
DAC monitor CH	:	DAC moni	itor への出力 CH 番号を選択します。
DAC monitor	:	DAC mon	itor 出力の波形選択。DAC 出力信号をオシロスコープで見ることにより、
		DSP 内部の	2処理状態をアナログ波形にて確認できます。(極性との組合せにてフルスケ
		-11±2V@	@1MΩ負荷)
		pre amp	:プリアンプ信号
		fast	: FAST 系フィルタ信号
		slow	: SLOW 系フィルタ信号
		CFD	: CFD の信号

4.2 advanced タブ

本 advanced タブ画面は、 通常非表示となっております。 本タブ画面を表示する際には、 キーボードより "Ctrl" + "Shift" + "F11" を押下ください。

Chi Digut bit Imput bit Impu bit Imput bit Impu	histogram	mode	error	save	acq.								Test	memo			8.10.128	ess 192.16	IP addr	DSP1	module [
PH I 0.000	real time	measurement mode	FWTM	FWHM	FWHM (%)	FWHM (ch)	net (cps)	net (count)	gross (cps)	gross (count)	peak (count)	centroid (ch)	peak (ch)	ROI No.	dead time ratio(%)	pileup rate(cps)	throughput rate(cps)	input total rate(cps)	throughput count	input total count	2H 10.
P20 : 0.000 0.000	24:00:00	measuremen time	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI1 :	0.0	0.000	0.000	0.000	0.000	0.000	CH1 :
Here 0.000	00:00:00	real time	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	RO12 :	0.0	0.000	0.000	0.000	0.000	0.000	CH2 :
2H4 :: 0.000 <t< td=""><td>0</td><td>quick scan</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.00</td><td>0</td><td>ROI3 :</td><td>0.0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>снз :</td></t<>	0	quick scan	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI3 :	0.0	0.000	0.000	0.000	0.000	0.000	снз :
R05: 0 0.00 0.000	0.00	list file size	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI4 :	0.0	0.000	0.000	0.000	0.000	0.000	CH4 :
R015: 0 0 0.00 0.000 0	0.00	(byte)	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI5 :							
ROIT: 0 0.00 0.00			0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI6 :							
Cti 0 0.00 0.000<			0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI7 :							
ctil integram config iff fast integra fast period fast per			0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.000	0.00	0	ROI8 :					0		-
config fat infig fat infig fat infig fat infig fat infig infig FD fD FD baseline infig baseline infig baseline infig baseline infig infig infig FD infig FD infig FD FD infig FD FD infig FD FD infig FD																		togram	config his	dvanced	CH ª
Integra Tast Tast <thtast< th=""> Tast Tast</thtast<>								NEG pulse	analog	analog		1.4			050 05				fast		config
CH1 2 0								(mV)	zero	gain	coupling	range	elect	alay(ns)	function del	select	r polarity	rejecto	integral zero	diff	1
CH2 : 20 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1999 🔷	0 🔶	200 🔤	2.2u 🗶	SDD 👻	Auto 属	0	0.25 🗶 20	CFD 👻	neg 👻	OFF _	20 🗶 0	20 💌	CH1 :
CH3 2 0								1999 🔄	0 🔄	200 🔄	2.2u 💌	. SDD 🗸	Auto 💽	0	0.25 🗶 20	CFD 💌	e neg 💽	I OFF	20 💌 0	20 💌	CH2 :
CH4 : 20 0 0 0 0 0 0 1999 0 measurement mode real time v clock internal v number of CH 4 4								1999 🐟	0 🖈	200	2.2u 💌	SDD 👻	Auto 💂	0 💌	0.25 🗶 20	CFD 👻	neg 💌	OFF	20 💌 0	20 💌	CH3 :
measurement mode real time clock internal mumber of CH 4 4 5 1000 1000 1000								1999 🐟	0	200 🔤	2.2u 💌	SDD 🗸	Auto 💂	0	0.25 😦 20	CFD 👻	neg 👻	I OFF	20 💌 0	20 👻	CH4 :
real transfer Mode real transfer to the clock internal number of CH 4 wrt wat num 5 000 Ist read size(byte) 10000 00									. Inc		(Landred		- Lange	(inclusion of the second secon			inti (1		
clock internal number of CH 4 wrt wat num 5 ₩] fat read size(byte) 10000 ₩]																			ent mode	real time	
Internal number of CH 4 wrt walt num 5 04 Ist read size(byte) 10000 04																			10.00	clock	
number of CH 4 wrt wait num 5 Mol Ist read size(byte) 10000																			-	internal	
4 wrt wat num 5 ⊕ Ist read size(byte) 10000 ⊕																			СН	number of	
wrt wat num <u>5</u> 40 list read size(Eyte) 10000 40																			7	4	
S Image: State Sta																			um	wrt wait n	
list read size(byts) 10000																				5	
10000																			e(byte)	list read siz	
																			24	10000	

図 4 advanced タブ

図 6 コンスタントフラクションタイミング (Constant Fraction Disicriminator Timing)の考え方

上図の異なる波形 a と b に対し、以下の波形 c, d と e, f と g, h のような波形を生成します。 波形 c, d : 波形 a と b を CFD function 倍し、反転した波形 波形 e, f : 波形 a と b を CFD delay 分遅延した波形 波形 g, h : 波形 c と e を加えた波形, d と f を加えた波形

波形gとhのゼロクロスタイミングである CFD は、波形の立ち上がり時間が同じであれば、 波高が変化しても一定である、という特徴があります。 CFD function: CFD 算出用に元波形を縮小するための倍率。0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875 から選択します

CFD delay : CFD 遅延時間を 10, 20, 30, 40, 50, 60, 70, 80ns から選択します

base line select :ベースラインを Auto, High から選択します

bit range : 使用する検出器に応じて SDD, Ge から選択します

coupling : 初段微分回路の設定をします。DSP 機器の基板上に「DC」や「RC」のジャンパポストが 実装されている場合は設定できません。また機器により固定の場合があります。 プリアンプ出力信号の状態により、以下から選択します。

「2.2us」 : 抵抗フィードバック型プリアンプ用スタンダード。

「1.2us」 : 抵抗フィードバック型プリアンプ用高計数向け。

- 「DC」 : 初段微分回路不使用。カップリングなし。
- 「2.2us(exRC)」: トランジスタリセット型プリアンプ用スタンダード。
- 「1.2us(exRC)」: トランジスタリセット型プリアンプ用高計数向け。
- analog fine gain :アナログファインゲイン。DSP 機器に入力された内部でのプリアンプ信号を増幅します。 設定範囲は0から255です。フロントパネルにアナログファインゲイン調整用ボリュームが実装 されているDSP 機器には設定できません。
- analog pole zero :アナログポールセロ。DSP 機器に入力された内部でのプリアンプ信号における立ち下がり部分のオーバーシュートやアンダーシュートを修正する設定をします。設定範囲は0から255です。 フロントパネルにアナログポールゼロ調整用ボリュームが実装されているDSP 機器には設定できません。

NEG pulse threshold: 負極性パルススレッショルドを設定します。

wrt wait num : リストモード時の転送レート調整値(default:5)

list read size(byte) :単位読出し数を設定します。

4. 3 config タブ

module	DSP1	IP add	ress 192.1	68.10.128			memo	Test								acq.	save	error	mode	histogram
CH CH No.	input total count	throughput count	input total rate(cps)	throughput rate(cps)	pileup rate(cps)	dead time ratio(%)	ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
СН1 :	H1 : 0.000 0.000 0.000 0.000			0.000	0.000 0.0	ROI1 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	measuremen time	24:00:00	
СН2 :	0.000	0.000	0.000	0.000	0.000	0.0	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	real time	00:00:00
СН3 :	0.000	0.000	0.000	0.000	0.000	0.0	ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	quick scan	0
CH4 :	0.000	0.000	0.000	0.000	0.000	0.0	ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	list file size	0.00
							ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	(byte)	0.00
							ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
							RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
							ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
CH C	onfig hi	stogram																		
-DSP-					- file														-	
made			quick core	man an at	histogram					aviek sere s	-			Sec.						
histor	gram .	1	100	illes count	Tistogram	save				quick scall s	ave			ISL S	save					
-				9																
measu	urement time	(sec)			histogran	file path				quick scan f	ile path			list f	ile path					
24:00	0:00	R			C:¥Data	test_				C:¥Data¥tes	t			C:à	#Data¥tes	t_				
										1000 - 100				Det 6	ile aumh	er file	Viziere			
										byte order				0	le numb	test	000000			
										big end big end	dian				1.41					
										U suce en										
<u>.</u>				23															10	

図 7 config タブ

•DSP部

: データ処理の選択。

mode	: データ処理の選	択。
	histogram	ヒストグラムモードは、プリアンプ信号の波高値を最大 4096ch
		に格納し、ヒストグラムを作成します。
	list	リストモードは、プリアンプ信号のタイムスタンプと波高値と CH
		番号を 1 つのイベントデータとし、連続的に PC ヘデータを転送す
		るモードです。(オプション)
	quick scan	quick scan モードは、QSG(Quick Scan Gate)入力端子へ LV-
		TTL の立ち上がりエッジを受信する毎にヒストグラムを取得するモ
		ードです。最小時間間隔は 10ms です。プリアンプ出力信号の波高
		値を4096ch に格納し、ヒストグラムを作成します。
measurement time	: 計測時間設定。	設定範囲は 00:00:00 から 48:00:00 です。
quick scan meas count	: quick scan E	ードでの計測回数設定。設定範囲は1から8191です。

• file 部	
histogram save	: 計測終了時にヒストグラムデータをファイルに保存します。
histogram file path	: ヒストグラムデータファイルの絶対パスを設定します。 拡張子無しも可です。
	※注意※
	このファイル名で保存されるのではなく、このファイル名をもとにして以下のフォー
	マットになります。
	例:
	<code>Fhistogram file path_ICFXDataXhistogram.csv_J</code> , <code>Fhistogram file save</code>
	time(sec)」に「10」と設定し、日時が2014/09/01 12:00:00の場合は、
	「C:¥Data¥histogram_20140901_120000.csv」というファイル名でデータ保
	存を開始します。
	10 秒後に「C:¥Data¥histogram_20140901_120010.csv」というファイルで
	保存します。
	※上記「120010」が「120009」または「120011」になる場合もあります。
histogram file save time(sec)	: ヒストグラムデータの連続保存の時間間隔を設定します。単位は秒です。設定範囲は
	5 秒から 3600 秒です。
quick scan save	: チェックを入れると quick scan モード時のデータ保存を有効にします。 チェックを
	入れない場合はデータが保存されません。
quick scan meas count	: quick scan 計測時の外部ゲート信号の入力回数設定です。
quick scan file path	: quick scan データファイルの保存パスを絶対パスで設定します。
byte order	: quick scan 時も保存されるバイナリ形式ファイルのエンディアンを選択します。
big endian	: ビッグエンディアン。最上位バイトから保存します。
little endian	: リトルエンディアン。最下位バイトから保存します。Windows PC の場合、HDD へ
	の書き込みが早く、プログラムでの読み込みが容易な場合があります。
list save	: リストデータをファイルに保存するか否かを設定します。DSP 部「mode」にて
	「list」を選択時のみ有効です。
list file path	:リストデータファイルの絶対パスを設定します。拡張子無しも可です。
	※注意※
	このファイル名で保存されるのではなく、このファイル名をもとにして以下に説明する
	「file number」から始まる番号がファイル名と拡張子の間に0詰め6桁で付加されます。
	例:
	Nist file path」に「C:¥Data¥list.bin」, Nist file number」に「O」と設定した場合は、
	「C:¥Data¥list000000.bin」というファイル名でデータ保存を開始します。

4. 4 histogram タブ

図8 histogram タブ

グラフ	: ヒストグラムグラフ。「config」タブ内「mode」にて「histogram」または「quick
	scan」を選択した場合、計測中にヒストグラムを表示します。
凡例チェックボックス	: グラフに CH 毎のヒストグラムを表示するか否かの設定をします。
ROI CH	: ROI (Region Of Interest) を対応させる CH 番号を選択します。1 つの CH 信号に
	対し、最大 8 つの ROI を設定可です。また、赤文字の ROI-SCA 機能における ROI
	とCHの対応と設定を共有しています。ROI-SCA に関しては後述を参照ください。
ROI start (ch)	: ROI の開始位置を設定します。単位は ch です。また、ROI-SCA 計測における ROI
	の開始位置と設定を共有しています。
ROI end (ch)	: ROI の終了位置を設定します。単位は ch です。また、ROI-SCA 計測における ROI
	の終了位置と設定を共有しています。
energy	: ピーク位置 (ch) のエネルギー値を定義します。 Mn-Kαの場合、 5.89 (keV)、 Mn
	-Kβの場合6.49(keV)と設定。※実際に御使用される際は信頼のできる文献値等を採用してください。
	次の「calibration」にて「ch」を選択した場合、ROI 間のピークを検出しそのピーク位
	置(ch)と設定したエネルギー値から keV/ch を算出し、半値幅の算出結果に摘要し
	ます。

calibration	: X軸の単位を選択します。設定に伴いX軸のラベルも変更されます。
	ch : ch(チャネル)単位表示。ROIの「FWTM」の「FWHM」などの単位は
	任意。
	eV : eV 単位表示。1 つのヒストグラムにおける 2 種類のピーク (中心値) と
	エネルギー値の2点校正により、chがeVになるように1次関数 y=ax+b
	の傾き a と切片 b を算出し X 軸に設定します。ROI の「FWTM」の
	「FWHM」などの単位は "eV" になります。
	keV : keV 単位表示。1 つのヒストグラムにおける 2 種類のピーク(中心値)と
	エネルギー値の 2 点校正により、 ch が keV になるように 1 次関数
	y=ax+bの傾き a と切片 b を算出し X 軸に設定します。ROIの「FWTM」
	の「FWHM」などの単位は "keV" になります。
	例:585.25ch にMn-Kαの 5.89(keV)、642.14ch にMn-Kβの
	6.49(keV)がある場合、2 点校正より a を 10.144、b を-23.677 と自
	動算出します。
	manual: 1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任意に設定し X 軸に設
	定します。単位は任意に設定します。
Ymapping	: グラフのY軸のマッピングを選択します。設定に伴いY軸のラベルも変更されます。
	linear :直線
	log :対数
smoothing	: 統計が少ない場合に半値幅を計算するためのスムージング機能です。
× 曹範囲	:X 軸上で右クリックして「自動スケール」をチェックすると自動スケールになります。
	チェックを外すと自動スケールでなくなり、X 軸の最小値と最大値が固定になります。
	最小値または最大値を変更する場合は、マウスのポインタを変更する数値の上に置き、
	クリックまたはダブルクリックすることで変更できます。
Y軸範囲	:Y 軸上で右クリックして「自動スケール」をチェックすると自動スケールになります。
	チェックを外すと自動スケールでなくなり、Y 軸の最小値と最大値が固定になります。
	最小値または最大値を変更する場合は、マウスのポインタを変更する数値の上に置き、
	クリックまたはダブルクリックすることで変更できます。
-+-	: カーソル移動ツールです。ROI設定の際カーソルをグラフ上で移動可能です。
Ð	: ズーム。クリックすると以下の 6 種類のズームイン及びズームアウトを選択し実行で
	きます。

図 9 グラフ ズームイン及びズームアウトツール

(1)四角形 : ズームこのオプションを使用して、ズーム領域のコーナーとするディスプレイ上の点をクリックし、四角形がズーム領域を占めるまでツールをドラッグします。

(2)X-ズーム :X軸に沿ってグラフの領域にズームインします。

(3)Y-ズーム : Y 軸に沿ってグラフの領域にズームインします。

(4)フィットズーム:全てのXおよびYスケールをグラフ上で自動スケールします。

(5)ポイントを中心にズームアウト :ズームアウトする中心点をクリックします。

(6)ポイントを中心にズームイン :ズームインする中心点をクリックします。

: パンツール。プロットをつかんでグラフ上を移動可能です。

5 準備及び調整方法

5.1 計測の流れ

計測を行うまでの流れは以下の通りです。

①接続

- (1) 全ての機器の電源がOFF になっていることを確認してから下記の手順で接続作業を行います。
 - 1. LAN コネクタとPC/スイッチングハブ側のLAN コネクタをケーブルにて接続します。
 - 2. MON 出力端子とオシロスコープをケーブルにて接続します。
- (2) 本装置の電源スイッチをONにします。
- (3) CH入力端子と検出器側のプリアンプ信号をケーブルにて接続します。
- (4) PCの電源をONにします。
- (5) 高圧電源モジュールとプリアンプ電源モジュール等の信号源の電源をONにします。
- (6) 10秒以上待ってからPCと本装置が接続できていることを次のように確認します。
 本装置の出荷時 IP アドレスは 192.168.10.128 です。「コマンドプロンプト」にて「> ping 192.168.10.128」が正常に実行できることを確認します。
- (7) 本ソフト "DSP MCA" を起動します。

以上で本装置と検出器の接続及び確認作業が終了になります。引き続き2設定を行っていきます。

2 設定

「CH」タブ、「config」タブ、において下記の通りに設定し、「Config」ボタンをクリックします。

※注意※

以下の設定は、弊社検査用 SDD 計測時の参考設定です。

ご使用になる検出器、プリアンプや環境によって、最適な設定は異なります。

「CH」タブ

analog coarse gain	:×5	
ADC gain	:4096	
fast threshold	:50	
slow risetime(ns)	: 1000	※高計数時は100または150
slow flattoptime(ns)	: 100	
slow polezero	:66	
slow threshold	:40	
LLD	:40	
ULD	: 4090	
digital coarse gain	∶x16	
digital fine gain	:0.5	
inhibit width(μ s)	:10	
「coopfig」 タブ		

mode	: histgram
measurement time	: 24:00:00 (24Hr)

③ アナログ入力レンジの確認

本装置に搭載されている ADC のアナログ入力レンジは回路のグランドレベルを中心に 4Vpp となっております。 このレンジが計測対象の X 線のエネルギー帯に対応する信号の波高値をカバーしているかをフロントパネルの MONI 端子出力によって確認する事ができます。

- (1) DSP-MCA アプリから「DAC monitor」を「pre amp」と設定します。
- (2)アナログ入力端子にエネルギーが既知の信号を入力します。
- (3)パネルのMONI端子から出力されている信号をオシロスコープで確認し、パルスの波高値を計測します。
- (4) 入力信号の X 線エネルギーEx 計測した信号の波高値 Vn(V)と本装置のエネルギーレンジ Emax には次式 (1)が成り立ちます。

 $E_{max} = E_x \times 2/V_h \cdot \cdot \cdot \cdot (1)$

- (5) 例えば、Mn の蛍光 X 線の検出器信号を本装置へ入力し、K α線(5.9keV)に対応するパルスの波高値が 200mV であった場合、最大エネルギーレンジは 59keV となります。
- (6) また、CH タブの「analog coarse gain」を切り替える事により V_hが変動するため、エネルギーレンジを変 更する事ができます。

トランジスタリセット型プリアンプ出力信号

MON 出力端子からの preamp 信号

④ SLOW 系フィルタの設定

- (1) 「CH」タブの「DAC monitor」を「slow」に設定
- (2) 本装置背面パネルの MONITOR 出力端子からの SLOW 系シェイピング信号をオシロスコープで確認
- (3) 「CH」タブの「slow pole zero」にて以下赤丸部分のポールゼロを調整

調整後

⑤ ヒストグラムの確認

- (1) メニュー「Config」を実行。本装置に全設定を送信します。
- (2) メニュー「Clear」を実行。ヒストグラムデータをクリアします。
- (3) メニュー「Start」を実行。計測を開始します。
- (4) 本ソフト画面の下側にヒストグラムが表示され、時間と共に更新されることを確認。(ROIの操作は histogram タブにて行えます)

高分解能計測例

高計数率計測例 図 10 ヒストグラム計測例

- 計測中 acq.LED が点滅して、「real time」と Nive time」が更新されます。
- 「real time」モード時は、「real time」が「measurement time」に到達すると計測を終了します。
 Nive time」モード時は、 Nive time」が「measurement time」に到達すると計測を終了します。
- 「ROI」部には、予め「calibration」タブ内の「ROI start」と「ROI end」に設定した範囲における スペクトルを対象に、以下の項目ついて逐次算出し、結果を表示します。
 - :最大カウントのch 「peak(ch) | 「centroid(ch)」 :全カウントの総和から算出される中心値(ch) 「peak(count)」 :最大カウント 「gross(count)」 :ROI 間のカウントの総和 「gross(cps)」 : ROI 間のカウントの CPS : ROI 間のバックグラウンドを差し引いたカウントの総和 Fnet(count) | 「net(cps)」 :ROI 間のバックグラウンドを差し引いたカウントのCPS [FWHM(ch)] :半値幅(ch) :半値幅(%)。半値幅÷ROI定義エネルギー×100 FWHM(%) 「FWHM」 :半値幅 [FWTM] :1/10幅
- (5) 手動で計測を終了する場合メニュー「Stop」を実行。計測を停止します。
- (6) 再計測や条件を変更して計測を継続する場合は、(1)の手順から行います。

5.2 デジタルパラメータの調整

※注意※

以下の説明において、便宜上蛍光 X 線検出器でないものや、プリアンプ出力信号がトランジスタリセット型でないものがあります。

(1) FPGA

本装置の DSP は FPGA (Field Programmable Gate Array) に組込まれています。 FPGA はプログラミング可能 なハードウェア論理演算 LSI です。 DSP に必要なアルゴリズムをプログラミングすることによって非常に大規模な回 路をチップ 1 枚に収めており、大幅なスペース削減が可能となります。 ソフトウェアによってシーケンシャルに処理 するマイクロプロセッシングや DSP (IC) と違い、特別なパイプラインアーキテクチャを組んだハードウェアの論理 回路は、リアルタイムで処理されていますので、 DSP の演算や ADC の変換によるデッドタイムは生じません。

(2) 台形フィルタ (Trapezoidal Filter)

本装置の DSP によるパルス整形 (pulse shaper) は台形フィルタを利用します。プリアンプの信号を2種類のファスト (Fast) 系とスロー (Slow) 系の台形整形 (Trapezoidal shaping) を行ないます。下図の黒色の波形はプリアンプの信号、青色の波形はファスト系、赤色の波形はスロー系です。

図 11 プリアンプの信号の台形フィルタ(ファストとスロー)処理した2種類の信号

ファスト系はタイミングを取得するためのフィルタで、プリアンプの立ち上がり部分を取り出すために、通常 0.1 μ s~0.5 μ s のライズタイム (rise time) に設定し、できる限り速くベースライン復帰して次のパルスに備えます。フ ァスト整形 (Fast Shaper) が設定された閾値を超えると、パルスの検出、パイルアップリジェクタの実行、ベース ライン検出を行います。

スロー系はエネルギー(波高)を計測するためのフィルタで、0.5 µs~16 µs のライズタイムを設定できます。高 分解能が必要とされる計測では、ライズタイムとフラットトップタイムとポールゼロ等の設定が非常に重要になります。 (3) 台形フィルタ (Trapezoidal Filter)のアルゴリズム

パイプラインアーキテクチャで構成されたフィルタブロックは、台形フィルタに必要な遅延・加減算・積分といった 値を ADC の 100MHz のクロックに同期して演算します。

$$FIL(n) = \sum_{i=0}^{n} \sum_{j=0}^{l} DIFF^{r,w}(j) + DIFF^{r,w}(i)P$$

$$DIFF^{r,w} = v(j) - v(j-r) - v\{j - (r+f)\} - v\{j - (2r+f)\}$$

$$P = (\exp(CLK / \tau) - 1)^{-1}$$

$$r = risetime$$

$$f = flattoptime$$

$$w = 2r + f = pulsewidth$$

(4) 台形フィルタ(Trapezoidal Filter)の設定値

台形フィルタのパラメータの調整は、背面パネル上 MONITOR 端子からの DAC monitor 出力をオシロスコープに 接続し、アナログモジュールと同じ感覚で設定することができます。

図 12 ライズタイム (rise time) とフラットトップタイム (flattop time) とポールゼロ (pole zero) の関係

下図のような、プリアンプ信号(黒色)とファスト系信号(赤色)とスロー系信号(青色)を参考にして、ファスト 系とスロー系の台形フィルタ処理を実現するための設定のポイントを記載します。

図 13 各信号の波形例

スロー系(青色)の設定のポイント

slow rise time: 台形の上底に達するまでの立ち上がり時間です。この値はエネルギー分解能に大きく影響します。 リニアアンプ同様に、「短い値だと分解能は悪いがスループットは高くなり」、「長い値だと分 解能は良いがスループットが落ちる」、といった傾向があります。 設定の目安としては、リニアアンプのピーキングタイムは 2.0~2.4×時定数になっているのが 一般的ですので、リニアアンプの時定数の 2 倍程度のライズタイム値が同じような分解能を示 します。 スループットは、リニアアンプと比較するとデッドタイムが 6.0~6.5×時定数に対して、

DSP は以下の式のようになります。

(rise time + flattoptime) $\times 1.25$

分解能特性に関わる設定として、リニアアンプの時定数を6µs とした場合と同じ条件に設定す るには、DSP のライズタイムを12µs、フラットトップタイムを1µs とします。ライズタイ ムの設定は2倍になりますが、デッドタイムはリニアアンプが36µs であるのに対して DSP が1625µsと半分程度となりますので、長い時定数であっても高いスループットが得られる ことになります。 slow flattoptime: 台形の上底の時間幅です。プリアンプの立ち上がりのバラツキによる波高値の誤差を台形の上底 の長さを設定することで調整します。設定値はプリアンプの立ち上がり時間の 0 から 100%で もっとも遅い rise time の2倍の値を設定します。通常は 0.8 µs~1.2 µs 程度になります。大 型のゲルマニウム検出器で立ち上がり時間のばらつきが多いものについては 1.2 µs~2 µs 程度 に設定する場合があります。デフォルト値は 1000ns です。

slow pole zero: スロー系フィルタの立ち下りアンダーシュート及びオーバーシュートをこの値を適切に設定する ことで軽減することができます。デフォルト値は 120 です。検出器によって変わりますので、 MONITOR 端子 (DAC monitor 出力)から出力されるフィルタ処理された信号をオシロスコ ープに接続して、調整しながら最適な値に設定します。

例 1 アンダーシュート

例2 オーバーシュート

例 3 調整後

(5) フィルタ以外の設定値

fast trigger threshold :この設定値は、以下の3つに影響します。

①ファスト系フィルタの閾値です。この閾値を超えたタイミングでリーディングエッジタイミング(LET)としてタイムスタンプします。

②ゲーテッドベースラインレストアラ(BLR)の閾値として使用します。

③パイルアップリジェクタの閾値として使用します。この値は検出器と接続した場合でノイズと 弁別可能なできるだけ低い値に設定します。

設定方法としては、ある程度大きい値(100 程度)を入力して Input Rate を観測します。 閾値を徐々に小さくし Input Rate が大きくなる値を見つけます。 その値が信号とノイズの境界なので、 その値より+3~+10 程度に設定します。

- LLD: エネルギーLLD (Lower Level Discriminator)を設定します。この閾値より下の ch はカウントしません。
- ULD :エネルギーULD (Upper Level Discriminator)を設定します。この閾値より上の ch はカウ
ントしません。

digital

coarse gain : デジタル的にゲインを1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍から選択しま す。台形フィルタの場合、積分回路は積和演算によって計算されます。ライズタイムを大きく取る ほど積和演算の回数が増え数値が大きくなり、ライズタイムを小さく取るほど数値が小さくなりま す。この値がそのままフィルタの出力になるため、補正をする必要があります。ライズタイムの設 定値と合わせて使用します。

digital-

fine gain : デジタル的にファインゲインを設定します。設定範囲は 0.3333 から 1 です

5.3 外部入力端子による信号処理

フロントパネルの LEMO コネクタ 「GATE」 「CLR」 「CLK」 を使用することで下記のような信号処理が可能です。 使用する場合には TTL レベルの信号が必要となります。許容できる High の信号レベルは 2~5V ですが、3.3V 信 号にて最適化しているため、3.3V 以下での使用を推奨致します。(必要な信号振幅/パルス幅は使用する信号処理で異 なります)

(1) GATE 信号によるイベントデータ取得

ある事象発生時にその時のイベントデータを取得したい場合は、フロントパネルのLEMOコネクタ「GATE」を使用します。

High の時は計測し、Low の時は計測しません。設定手順は以下の通りです。

- 1. DAC モニタ出力の SLOW 系フィルタの「slow」をオシロスコープで見ます。
- 2. SLOW 系フィルタが確定する範囲の GATE 信号(目安として slow 信号の立上りから立下りまでをカバーす
 - る

パルス幅を作り、入力します。

(2) 外部クロックの使用

フロントパネルの LEMO コネクタ「CLK」に外部クロックを供給することで同期をとることが可能です。設定手順は以下の通りです。

1. 「CLK」に外部から TTL レベルの 25MHzの矩形信号(Duty 比50%)を入力します。

2. DSP MCA の「config」 タブ内「clock」を「external」に変更します。設定前に必ず上記 1.を行ってからにしてください。

(3) 外部CLRの使用

外部信号で計測時間及びリストデータ用タイムスタンプの時間情報をゼロクリアしたい場合は、フロントパネルの LEMO コネクタ「CLR」を使用します。High の時にクリアを行います。システムがクリア入力を十分に判別可能な パルス幅(High レベルを50ns 以上)の信号を入力してください。

5. 4 ROI-SCA 機能の説明

フロントパネルの AUX1、AUX2、AUX3、AUX4 端子は ROI-SCA 出力機能を有しておりまず。

(1) ROI-SCA 機能

各モードの計測中に histgram タブで設定した ROI 範囲内のエネルギー情報を持つイベントを検出すると、 SLOW 系フィルタに対するピーキング処理を終えた直後にパルス幅 50ns の 3.3V LV-TTL 信号が AUX 端子 より出力されます。

ROI-SCA 機能を持つ ROI は ROI1、ROI2、ROI3、ROI4 のみです。ROI-SCA 信号はそれぞれの ROI と同じ 番号の AUX 端子より出力されます。

図 15 ROI-SCAのROI設定

出力ロジック信号例は以下の通りです。

(オシロ CH1:プリアンプ入力、CH2:Slow モニタ、CH3:(SCA)ROI範囲外、CH4:(SCA)ROI範囲内)

5.5 半値幅 FWHM (Full Width at Half Maximum)の計算方法

FWHM fmax **P1 P3** L2 L3fmax*1/2 --- L1 **P2 P4** offset **ROI** start ROI end x1 x2 図 17 FWHM 算出

「ROI」部にある FWHM(Full Width at Half Maximum)は、以下の通りに算出されています。

- (1) ヒストグラムにおける ROI Start と ROI end 間の最大値 fmax を検出します。
- (2) ヒストグラムと ROI start の交点と、ヒストグラムと ROI end の交点を直線で結びます。その直線とピーク値 fmax から x 軸へ垂直におろした線との交点を求めバックグラウンドオフセット(offset)を算出します。
- (3) fmaxからoffsetを差し引いた部分の1/2を算出し、X軸と平行した直線L1を引きます。
- (4) ヒストグラムとL1 が交差する2 点を求めるため、交差する前後点P1 とP2、及びP3 とP4 を検出します。
- (5) P1 と P2 を結ぶ 直線 L2 と、同じく P3 と P4 を結ぶ 直線 L3 を引きます。
- (6) L1 とL2 の交点の X 座標 x1 と、同じく L1 とL3 の交点の X 座標 x2 を求めます。
- (7) x2 と x1 の差をFWHM とします。

6 計測

(注意)本章は計測部についての説明のため、すでに電源や高電圧等が検出器やプリアンプに印加されており、プリアンプからの信号がINPUT 端子に入力されている状態を想定した手順になります。

6.1 初期化設定

- (1) メニュー「Config」をクリックします。実行後、DSP内全設定がDSPに送信されます。
- (2) メニュー「Clear」をクリックします。実行後、DSP内ヒストグラムデータが初期化されます。 前回の計測したヒストグラムや計測結果を継続する場合は、「Clear」をクリックせずに次の計測を 開始します。

6.2 計測開始

- ・メニュー「Start」をクリックすると、計測を開始します。
- ・「CH」部に各CHの計測状況が表示されます。
- 「acq」LED が点滅します。
- ・「measurement time」に計測設定時間が表示されます。
- ・「real time」にDSPから取得したリアルタイムが表示されます。

【ヒストグラムモードの場合】

- ・「mode」に「histogram」と表示されます。
- ・「ROI」部に各計算結果が表示されます。
- 「histogram」タブにヒストグラムが表示されます。

図 18 ヒストグラムモード

スタンドアロンマルチチャンネルアナライザ APU504 取扱説明書

- 【リストモードの場合】(オプション)
- 「mode」に「list」と表示されます。
- ・リストモード時は「save」LED が点滅し、「config」タブ内「file size(Byte)」右側に現在保存中のファイルサイズが表示されます。

	IP address	192.16	8.10.128			memo	Test								acq.	save	error	mode	list
input total th count	hroughput in count ra	put total ate(cps)	throughput rate(cps)	pileup rate(cps)	dead time ratio(%)	ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
: 17.997k 1	17.999k 1	.000k	1.000k	0.000	0.1	ROI1 : 3	214	3213.92	422.000	1.001k	1.001k	1.001k	1.001k	2.0	0.063	3.699	9.000	measuremen time	24:00:00
: 0.000	0.000	0.000	0.000	0.000	0.0	RO12 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	real time	00:00:18
: 0.000	0.000	0.000	0.000	0.000	0.0	RO13 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	quick scan	0
: 0.000	0.000	0.000	0.000	0.000	0.0	ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	meas count	470.001
						ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	(byte)	179.00K
						ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
						RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
						ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000		
t v easurement time(s 4:00:00	e0	00 🕀		histogram C:¥Data¥	file path test_				quick scan f C:WDataWter byte order	ie path #			list f Drw list f	le path product le numb	WAPN5049 er file list i	ievaluation¥ Name 100000	6e.		

図 19 リストモード

【quick scan モードの場合】

- ・「mode」に「quick scan」と表示されます。
- ・QSG 端子への信号がOV(LOW レベル)である必要があります。
- ・メニュー「Start」をクリックし、「acq」LED が点滅した状態になるとデータファイルを生成し、QSG 端子への LV-TTL の信号待ちとなります。
- ・QSG 端子への LV-TTL の立ち上がりエッジを検出してから High 状態の間 CH1 から CH4 のスペクトルデータ 生成し、立ち下りエッジ検出後にデータを PC へ転送して、PC では読み出したデータをファイルへ保存します。 立ち下がりエッジを検出する回数は、予め設定した「quick scan meas. count」の回数分となります。QSG 端 子への信号のパルス幅は、例えば 10ms 設定では、High 状態が 10ms 続き、その後 Low 状態が最短 10 µs と したものを 1 周期とします。

Pi Input total Imput total Imputt total Impu total Im	FWHM FWHM FWH (%) (%) FWHM 2.0 0.063 3.6 0.0 0.000 0.6 0.0 0.000 0.6 0.0 0.000 0.6 0.0 0.000 0.6	HM FWTM 699 9.000 000 0.000 000 0.000 000 0.000	measurement mode measuremen time real time quick scan meas count	real time 24:00:00 00:00:00
H1 : 0.000 0.000 0.000 0.000 0.001 coline 321.32 321.32 322.000 1.001k	2.0 0.063 3.6 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0	699 9.000 000 0.000 000 0.000 000 0.000 000 0.000	real time quick scan meas count	24:00:00 00:00:00
H2 : 0.000	0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0	000 0.000 000 0.000 000 0.000	real time quick scan meas count	00:00:00
H3 E 0.000 0	0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0	000 0.000	quick scan meas count	
4 2 0.000 </th <td>0.0 0.000 0.0</td> <td>000 0.000</td> <td>meas count</td> <td>11/</td>	0.0 0.000 0.0	000 0.000	meas count	11/
ROIS : 0 0.00 0.0	0.0 0.000 0.0		the second se	217
ROIE : 0 0.00 0.000 0.000 0.000 0.000 ROIT : 0 0.00 0.000 0.000 0.000 0.000 0.000		000 0.000	(byte)	0.00
R017: 0 0.00 0.000 0.000 0.000 0.000 0.000	0.0 0.000 0.0	000.000		
	0.0 0.000 0.0	000.0 000		
ROIS: 0 0.00 0.000 0.000 0.000 0.000 0.000	0.0 0.000 0.0	000.0 000		
24:00:00 IM Life DiffereductADNSDRevaluationNegg_ Imp Diff byte order ist fill @ big endian 1 Of Big endian 0 Itile endian 1	product#APN504#evalua le number file Name	ation¥list_		

図 20 quick scan モード

6.3 計測停止

• 「measurement mode」:「real time」⇒ 「real time」が 「measurement time」に到達すると計測は終了します。

・「quick Scan」モードでは、QSG 端子に入力された外部入力トリガーのネガティブエッジの数が「config」タブ で設定した「quick scan meas count」に到達すると計測が停止します。

・計測中に停止する場合は、メニュー「Stop」をクリックします。実行後計測を停止します。

7 終了

7.1 ソフト終了

 メニューFile - quit をクリックします。確認ダイアログにて quit をクリックします。実行後、本ソフトは 終了します。

8 ファイル

8.1 ヒストグラムデータファイル

(1) ファイル形式

カンマ(、)区切りのテキスト形式

(2) ファイル名任意

(3)構成

「Header」部と「Status」部と「Calculation」部と「Data」部からなります

•Header (ヘッダー) 部

	Measurement mode	:	計測モード。Real time または Live time
	Measurement time	:	計測時間。単位は秒
	Real time	:	リアルタイム
	Live time	:	ライブタイム
	Dead time	:	デッドタイム
	Start Time	:	計測開始時刻
	End Time	:	計測終了時刻
※以下	CH 毎に保存		
	ACG	:	コースゲイン
	ADG	:	ADC ゲイン
	FIT	:	FAST 系ライズタイム
	FDI	:	FAST 系フラットトップタイム
	SFR	:	SLOW 系ライズタイム
	SFP	:	SLOW 系フラットトップタイム
	FPZ	:	FAST 系ポールゼロキャンセル
	SPZ	:	SLOW 系ポールゼロキャンセル
	FTH	:	FAST 系スレッショルド
	LLD	:	エネルギLLD
	ULD	:	エネルギULD
	STH	:	SLOW 系スレッショルド
	PUR	:	パイルアップリジェクト
	POL	:	極性
	DCG	:	デジタルコースゲイン
	DFG	:	デジタルファインゲイン
	TMS	:	タイミング選択
	CFF	:	CFD ファンクション

スタンドアロンマルチチャンネルアナライザ APU504 取扱説明書

CFD	•	CFDディレイ
IHW	•	インヒビット幅
PZD	•	アナログポールゼロ調整
FGD	:	アナログファインゲイン調整
DIF	:	初回微分回路の時定数
BRS	:	ベースラインセレクト(推奨:AUTO)
BTS	:	ビットレンジ (SDD に設定ください)
IHT	:	負極性パルススレッショルド
※CH毎はここまで		
MOD	:	モード
MMD	:	計測モード
MTM	:	計測時間
CLS	:	クロック選択
SCS	:	WAVE サンプリングクロック

•Calculation (計算) 部

※以下 ROI 毎に保存		
ROI_ch	:	ROIの対象となった入力チャンネル番号。
ROI_start	:	ROI開始位置(ch)
ROI_end	:	ROI終了位置(ch)
Energy(keV)	:	ROI間のピークのエネルギー値(keV)
peak(ch)	:	ROI間のピーク位置(ch)
centroid(ch)	:	ROI間の中心位置(ch)
peak(count)	:	ROI間のピークchカウント
gross(count)	:	ROI間のカウント数の総和
gross(cps)	:	ROI間のカウント数のcps
net(count)	:	ROI間のバックグラウンドを差し引いたカウント数の総和
net(cps)	:	ROI間のバックグラウンドを差し引いたカウント数の総和のcps
FWHM(ch)	:	ROI間の半値幅(ch)
FWHM(%)	:	ROI 間の分解能(%)
FWHM(keV)	:	ROI間の半値幅(keV)
FWTM(keV)	:	ROI間の全値幅(keV)

・Status (ステータス) 部

※以下 CH 毎に保存		
input total count	:	トータルカウント
throughtput count	:	スループットカウント
input total rate	:	トータルカウントレート
throughtput rate	:	スループットカウントレート
pileup rate	:	パイルアップカウントレート
dead time ratio	:	デッドタイム割合

Data (データ) 部

各チャンネル毎のヒストグラムデータ。最大4096点。

8.2 リストデータファイル

(1) ファイル形式

バイナリ、ビッグエンディアン形式

(2) 構成

1イベントあたり 80bit(10Byte、5WORD)

Bit79										64
	ABS[47.32]									
63										48
	ABS[3116]									
47							36	35		32
		ABS[15.4]			ABS 固定小数[30]					
31 30	29									16
空き[10]	PHA[13.0]									
15				8	7		4	З		0
		空き[70]				UNIT[30]			CH[30]	

図 21 リストデータ(80bit)構成

・Bit79からBit36	ABS(アブソリュート)カウント。44Bit。1Bit あたり 10ns。
	最大計測時間は約48時間(48時間=244 * 10ns)。
• Bit35 から Bit32	ABS(アブソリュート)カウント固定小数。4Bit。1Bit あたり 0.625ns。
• Bit31 から Bit30	空き。2Bit。
• Bit29から Bit16	PHA(波高値)。ADC gain が最大 8192 の場合は、13Bit、0 から 8191。
• Bit15からBit8	空き。8Bit。
・Bit7からBit4	ユニット番号。4Bit。
	ユニット1は0、ユニット16は15。
・Bit3からBit0	CH 番号。4Bit。(但し、Bit3-2:常時"OO")

8. 3 quick scan モードデータファイル

(1) 構成

①ヘッダー部

項目	サイズ (バイト)	内容
RUN Number	2	実験番号。0から65535まで
計測回数	2	計測回数。1から8191まで
チャネル数	2	チャネル(ビン)数。128、256、512、1024、2048,
	2	4096
予備	14	予備
合計	20	

②データ部

- ・ スペクトル1チャネル(ビン)当たり2バイト
- ・ データサイズは計測回数とチャネル数により可変
 - 例:計測回数が最大8000回、チャネル数が最大4096 チャネルの場合 262,144,000 バイト = 2 バイト×4096 チャネル×4 チャンネル×8000回
- (2) 形式

バイナリ形式、ビッグエンディアンまたはリトルエンディアン。予め設定による切り替えが可能。設定ファ イル「config.ini」内「Config」セクションの「ByteOrder」において、Oのときはビッグエンディアン、 1などO以外の時はリトルエンディアンになります。

9 その他

9.1 ソフトウェアのインストール

新しい PC にて本ソフトを使用する場合や初期設定状態に戻したい場合などには本ソフトのインストールが必要です。 以下にインストール手順を記載します。

- (1)動作環境を確認します。推奨環境は以下のとおりです。Microsoft 社製 Windows 7 32Bit 推奨、画面解像度 XGA(1024×768)以上
- (2) 管理者権限を持つアカウントでログインします。
- (3) 付属 CD 「Installer」 フォルダ内の「setup.exe」を実行します。対話形式で進めていき、インストール終了後 にOS を再起動します。
- (4) 本ソフトを起動します。「スタート」-「すべてのプログラム」-「TechnoAP」-「DSP-MCA」をクリックします。実行後本ソフトが起動します。

なお、アンインストールは「コントロールパネル」の「プログラムの追加と削除」(Windows XP)、「プログラムの アンインストールまたは変更」(Windows 7)から「DSP MCA」を削除します。

9.2 機器初期設定に失敗した場合

本ソフトを起動した時に、装置との接続に失敗した内容のエラーメッセージが表示される場合があります。 主な原因は以下の通りです。

- ・ PC 側の LAN ケーブルの差し込みが不足している。
- ・ 本装置側のLANケーブルの差し込みが不足している。
- ・ 本装置の電源がOFF のまま、もしくは、LAN ケーブルの断線。
- PC 側のネットワーク設定が DHCP になっていたり、プライベートアドレス(192.168.128 を除く 192.168.10.2 から 255) で設定されていない。
- ・ PCの省電力モードが機能していた。
- ・ 設定ファイル内「System」セクションのポート番号情報がOになっている。

※この現象解決の為に、いきなり本装置の電源をOFF にしないでください。

この場合は、ケーブルの接続などの確認後、本ソフトの再起動をお願いします。

再起動後に状況が改善しない場合は、電源を入れなおしてから数秒後に PING コマンドにて接続を確認してください。

10 保証規定

「弊社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入1年間といたします。
- 保証内容 保証期間内で本取扱説明書にしたがって正しい使用をしていたにもかかわらず、故障した場合、修理 または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
- (1) 使用上の誤り、又は不当な修理や改造、分解による故障・損傷。
- (2) 落下等による故障・損傷。
- (3) 過酷な環境(高温・多湿又は零下・結露など)での故障・損傷。
- (4) 上記のほか「弊社製品」以外の原因。
- (5) 消耗品。
- (6) 火災・地震・水害・落雷などの天災地変、盗難による故障。
- (7) 水濡れと判断された場合。

弊社製品をご使用の際には上記の全項目について同意されたものとします。

【お問い合わせ先】

株式会社テクノエーピー

住所	:	〒312-0012 茨城県ひたちなか市馬渡 2976-15
TEL	:	029-350-8011
FAX	:	029-352-9013
URL	:	http://www.techno-ap.com
e-mail	:	order@techno-ap.com
お問い合	せ受	付時間 : 電話:平日9:30~17:00

【代理店】