MCA (Multi Channel Analyzer)

ユーザーマニュアル

第 3.1.0 版 2015 年 6 月

株式会社テクノエーピー

〒312-0012 茨城県ひたちなか市馬渡 2976-15 TEL.029-350-8011 FAX.029-352-9013 http://www.techno-ap.com

免責事項

平素は株式会社テクノエーピー(以下「当社」)の製品をご愛用いただき誠にありがとうございます。

当社製品のご使用によって発生した事故であっても、装置・接続機器・ソフトウェアの異常、故障に対する損害、その 他二次的な損害を含む全ての損害補償について、当社は一切責任を負いません。 ご利用に際しては、自己責任にてご判断くださいますようお願いいたします。

🚫 禁止事項

- ・ 人命、事故に関わる特別な品質、信頼性が要求される用途でのご使用はご遠慮ください。
- ・ 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- ・ 定格を超える電源を加えないでください。
- ・ 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

注意事項 $\langle | \rangle$

- ・ 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ・ ノイズの多い環境では正しく動作しないことがあります。
- ・ 静電気にはご注意ください。
- ・ 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「当社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア) 「当社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

株式会社テクノエーピー

目 次

1. 概要	
1.1.	仕様6
1.2.	改訂8
2. 準備	
2.1.	電源及びケーブル9
2.2.	モニタ9
2. 3.	ネットワーク接続の確認9
2.4.	ソフトウェア
3. 画面	
3 1	記動面面 11
3.9	に到日回 11 config タブ 13
0.2. 2.2	Coming アノ
ວ. ວ. ວ. 4	$\frac{11}{12}$
3.4.	
3. 5.	<i>19</i>
4. 設定	
4.1.	スレッショルドの設定20
4.2.	ピーク検出モードの設定20
5. 計測	
5.1.	初期化設定
5.2.	計測開始
5. 3.	計測停止
0 7	
6. ノアイ	1.1.24
6.1.	スペクトルテータファイル
6.2.	リストデータファイル
7. コマン	ンド
7.1.	概要
7.2.	コマンドフォーマット
7.3.	コマンドの種類
7.4.	コマンド一覧
7.5.	コマンド説明

7.6.	リストデータ処理フロー36
8. 機能	崔
9.1.	GATE 信号によるイベントデータ取得37
9. 2.	VETO 信号によるイベントデータ破棄38
9.3.	FWHM(半値幅)の算出39
9.4.	gross (グロス)カウント及び net (ネット)カウントの算出40
9. 5.	2 点校正の計算方法
9. ネッ	トワーク情報の変更
9.1.	MCA ソフトウェアでの設定方法42
9.2.	CPU ボードでの設定方法
10.	トラブルシューティング
11.	保証規定

1. 概要

テクノエーピー社製 MCA(Multi Channel Analyzer、マルチチャネルアナライザー)製品は、アナログ信号入力に4チャンネルまたは8チャンネルを持ち、各チャンネルに高速逐次比較型 ADC を搭載した MCA です。高計数率、多チャンネルを必要とする、原子核実験、放射光実験などでの使用を目的にした製品です。

MCAには、検出器からのプリアンプ信号をスペクトロスコピアンプ(リニアアンプ)に入力し、アナログ回路によって増幅と波形整形(シェイピング)処理された出力信号を入力します。この信号の振幅(波高値、ピーク値)には、放射線の エネルギー情報などが含まれています。MCAは、この信号を検出し、最大波高値をデジタル(AD)変換しスペクトル (スペクトル)を生成する波高解析装置です。

MCAの性能を表す指標に「デッドタイム」があります。デッドタイムとは、MCA が波高値を計測できない時間帯のことです。放射線のように不規則に発生する事象に対し、事象発生からピーク検出から、波高値のデジタル変換、メモリ 書き換え、波高値のリセットまでを実行している間は、新たな事象を計測できません。通常 MCA のデッドタイムは、速 いもので1µ sec と言われていますが、弊社 MCA のデッドタイムは固定 360nsec です。

ADC に関しては、複数の入力 CH に対し1 つの ADC で循環処理するマルチプレクサではなく、全ての入力 CH に対し逐次比較型 ADC を搭載しています。

ピーク検出の手法としては、ピークを検出してから AD 変換する一般的な「アブソリュートモード」の他に、「ファーストピーク検出モード」があります。このモードでは、パルスピークを検出した直後に AD 変換を開始します。スペクトロスコピアンプで高速とされる 0.25 µ s パルスシェイピングまでは、パルス内で検出変換処理を終わらせることが可能です。

計測データとしては、「スペクトル」データと「リスト」データがあります。スペクトルは波高値のスペクトルです。リストは事象ごとにタイムスタンプと波高値とCH情報を出力します。計測データは、イーサネットを介してPCへ転送することができます。

アプリケーションソフトウェアは、Windows 上で動作するソフトウェアが付属しております。MCA は、一般的な TCP/IP や UDP 通信を使用した製品ですので、Windows 以外の Linux などの環境でも、同様の計測制御のプログラムを作成 することができます。

本書は、弊社 MCA 製品の取り扱いについて説明するものです。

※文章中、信号入力のチャンネルは"CH"、ビン数を表すチャネルは"ch"と大文字小文字を区別してあります。 ※文章中の、"リスト"と"イベント"は同意義です。 ※文章中の、"波高値"と"ピーク値"は同意義です。

1.1. 仕様

(1) アナログ入力	
・チャネル数	4CH、8CH
・入力レンジ	0 から 10V
・入力インピーダンス	$1 \mathrm{k} \Omega$
・入力可能パルス幅	最小 100nsec から最大 100 µ sec
 ・コネクタ 	LEMO 社製 EPL.00.250.NTN
(2) ADC	
·変換方式	逐次比較型
·分解能	16bit
·変換時間	200ns
・リセット時間	160ns
•ADC GAIN	16384、8192、4096、2048、1024、512、256、128 チャネル
・スレッショルド	フルスケール 0から50%、PCから設定
•LLD	フルスケール 0から100%、PCから設定
•ULD	フルスケール 0から100%、PCから設定
・ゼロ調整	フルスケール 0から2%、フロントパネルのボリュームにて調整
(3)性能	
・デッドタイム	360nsec 固定
・スループット	高エネルギーγ 線の場合 130kcps 以上、低エネルギーX 線 250kcps 以上
•分解能	130eV @ 5.keV (Si(Li)検出器)
・積分非直線性	$\pm 0.025\%$ (typ)
·微分非直線性	\pm 1%(typ)
(4) 機能	
・計測モード	スペクトルモード、リストモード
・通信 I/F	TCP/IP
	※オプションでデータ転送量が約 2MByte/秒の UDPも可
・イベント転送レート	約 1.2MByte/秒。1 イベント 10Byte(80bit)の場合、CH 合計で 120kcps。
(5) 消費電流	
+5V : 1.0A	
+12V : 0.7A	
-12V : 0.7A	
(6) アプリケーション	MCA software Windows 版。 付属 CD からインストール。

1.2. 改訂

2010/02/04	第 1.0.0 版	初版
2010/04/13	第 1.1.0 版	ファイル説明の修正。コマンド説明の追加
2011/02/23	第 1.2.3 版	免責事項追記。全体見直し
2013/11/14	第 3.0.0 版	MCA ソフトウェア更新に伴う説明の変更。
2015/06/24	第 3.1.0 版	MCA ソフトウェア更新に伴う説明の変更。

2. 準備

2.1. 電源及びケーブル

- (1) MCAとPCをイーサネットケーブルで接続します。
- (2) MCAの電源を入れます。計測は電源投入後10分以上経過後を推奨します。
- (3) PC の電源を入れます。
- (4)検出器側プリアンプ出力信号をスペクトロスコピアンプに接続します。
- (5) スペクトロスコピアンプの出力信号を MCA の各 CH に接続します。

2.2. モニタ

ソフトウェアがモニタ内に全て表示されるように、モニタの解像度はWXGA(1280x768)以上を推奨します。

2.3. ネットワーク接続の確認

(1) PC のネットワーク情報を変更します。以下のような、ネットワークアダプタの IP アドレス等を変更するためのプロパティ画面にて行います。尚、本製品の IP アドレスは、出荷状態で「192.168.10.128」と設定されておりますので、 PC 側の IP アドレスは、MCA のアドレスと重複しない値で設定してください。

(例)

IP アドレス	:	192.168.10.2
サブネットマスク	:	255.255.255.0
デフォルトゲートウェイ	:	192.168.10.1

ットワークでこの機能がサポートされて ます。サポートされていない場合は、オ (ださい。	こいる場合は、IP 設定を自動的に取得することが ネットワーク管理者に適切な IP 設定を問い合わせ
◎ IP アドレスを自動的に取得する(0)
◎)次の IP アドレスを使う(S):	
IP アドレス(D:	192 . 168 . 10 . 2
サブネット マスク(山):	255 . 255 . 255 . 0
デフォルト ゲートウェイ(<u>D</u>):	192 . 168 . 10 . 1
DNS サーバーのアドレスを自動的	的に取得する(<u>B</u>)
◎ 次の DNS サーバーのアドレスを使いた。	使う(<u>E</u>):
優先 DNS サーバー(<u>P</u>):	
代替 DNS サーバー(<u>A</u>):	es a a
終了時(:酔完を検証する(!)	

図 2 プロパティ画面(Windows 7 の場合)

(2) コマンドプロンプトにて ping コマンドを実行し MCA と PC が接続できるか、エラーがないことを確認します。
 MCA の IP アドレスは基板上またはケース背面にあります。
 出荷状態のネットワーク情報は以下の通りです。

IP アドレス	:	192.168.10.128	(出荷状態)
サブネットマスク	:	255.255.255.0	(出荷状態)
デフォルトゲートウェイ	:	192.168.10.1	(出荷状態)

※ノートPCで有線LANを使用し、無線LANを使用しない場合は、無線LANを無効にしてください。

図 3 コマンドプロンプト画面(Windows 7 の場合)

2.4. ソフトウェア

MCAの実行形式ファイルとNational Instruments 社製 LabVIEW のランタイムエンジンをインストールする必要があります。 MCA のインストーラには MCA の実行形式ファイルと LabVIEW のランタイムエンジンが含まれており同時にインストールができます。 インストール手順は以下の通りです。

- (1)管理者権限でログインします。
- (2) 添付 CD-ROM「MCA Software」内の「Setup.exe」を実行します。実行後以下の画面が表示されます。対話形式 にてインストールを進めます。デフォルトのインストール先は、"C:¥TechnoAP¥MCA"です。

(3)「スタートボタン」-「TechnoAP」-「MCA」またはデスクトップ上のショートカットアイコンから起動します。 (4)「MCA」が起動します。

尚アンインストールは、「プログラムの追加と削除」から「MCA」を選択して削除します。

3. 画面

3.1. 起動画面

「スタートボタン」-「TechnoAP」-「MCA」を実行すると、以下の起動画面が表示されます。

MCA	3.1.0																X
File E	dit Config	Clear St	art Sto	p													
module	MCA1] IP add	ress 192.16	8.10.128		Memo Memo							acq,	save	error	mode	spectrum
CH No.	throughput count	throughput of rate(cps)	dead time ratio(96)	ROI No.	peak (ch)	centroid (ch) (peak count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (ch)	FWTM (ch)	measurement mode	real time
CH1 :	0.000	0.000	0.0	ROI1 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	time	48:00:00
CH2 :	0.000	0.000	0.0	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	real time	00:00:00
CH3 :	0.000	0.000	0.0	ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	live time	00:00:00
CH4 :	0.000	0.000	0.0	ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time	00:00:00
CHS :	0.000	0.000	0.0	ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		00:00:00
CH6 :	0.000	0.000	0.0	ROID :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	file size(Byte)	0.000
CH8 :	0.000	0.000	0.0	ROI7 -	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time ratio	0.0
		0.000	0.0		U	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	ist data ouner	0.0
config	file calibr	ation				300.0	-	_						1 1			
	ADC	101 10120 102	1943	101383	85 W	280.0	-1										CH2
ON	gain	threshold L	LLD	ULD	offset	260.0	-										
CHI	: 16384 👻	30	100	16383	0 101	740.0											CH4
CH2	16384	20	100	16303		2.000	1										
CH4	16384	30 44	100	16283	0 101	220.0											СНЕ
CH5	16384	30	100	16383	0	200.0	1										
CH6	: 16384 🖵	30	100	16383 🔄	0 🗠		-										СНВ
CH7	: 16384 🖵	30	100	16383	0 🔤	.⊑ 160.0	4										
CH8	: 16384 🖵	30	100 🔄	16383 🔄	0 🔶	Ê 140.0											1
						8	1										
spectro	um 🖂					120.0	-										-
						100.0	-										-
measu real tin	ement mode					80.0	-										-1
	~					60.0	1										1
peak o	etect						1										
fast	•					40.0											1
measur	ement time(sec)					20.0	-										
48:00:	00 🖂					0.0			12 1		1. 1.			1 1	1		-
numbe	r of CH						0 10	00 2000	3000 40	00 5000	6000 7000) 8000 1	9000 10000	11000 1200	00 13000 1	4000 15000 1	.6383
8						1	Y mapp	ng			1.4	A	18 8.88	an als (Paras)	A 11	V.VV =1	m
						1	 linea 	r 🔘 log			len	U		ounts (iineář)	w p		20

図 4 MCA 起動画面

・メニュー		
	「File」、「Edit」、「Config」、「Clear」	」、「Start」、「Stop」から構成されます。
	「File」-「open config」	設定ファイルの読み込み
	「File」-「open spectrum」	スペクトルデータファイルの読み込み
	「File」-「save config」	現在の設定をファイルに保存
	「File」-「save spectrum」	現在のスペクトルデータをファイルに保存
	「File」-「save image」	MCA 画面を PNG 形式画像で保存
	「File」-「quit」	終了
	「Edit」-「IP configuration」	MCAの IP アドレス等設定画面
	「Config」	MCA へ全設定を送信
	「Clear」	MCA 内のスペクトルデータを初期化
	「Start」	MCA へ計測開始を送信
	「Stop」	MCA へ計測停止を送信
・タブ		
	「config」、「file」、「calibration」から	構成されます。
	「config」	MCA に関する設定
	ſfile」	データをファイルに保存するための設定
	[calibration]	ROI (Region Of Interest)及びエネルギー校正に関する設定
•CH 部		
	CH 毎の状況を表示します。	
	「throughput count」	トータルカウント。処理したイベント数
	「throughput rate(cps)」	カウントレート。1 秒間に処理したイベント数
	「dead time ratio(%)」	計測開始からのデッドタイムの割合(%)。dead time÷real time×100

・ROI 部		
	ROI 間の算	算出結果を表示します。
	「peak(ch)」	最大カウントの ch
	[centroid(ch)」 全カウントの総和から算出される中心値(ch)
	「peak(cour	nt)」 最大カウント
	「gross(cou	nt)」 ROI 間のカウントの総和
	「gross(cps)」 ROI 間のカウントの総和÷real time
	「net(count)」 ROI 間のバックグラウンドを差し引いたカウントの総和
	「net(cps)」	ROI 間のバックグラウンドを差し引いたカウントの総和÷real time
	FWHM(c)	h)」 半値幅(ch)
	FWHM(%))」 半値幅(%)。 半値幅÷ROI 定義エネルギー×100
	「FWHM」	半値幅
	[FWTM]	1/10 幅
•module •IP Addres	S	計測対象とする MCA を選択します IP アドレス。構成ファイルにて定義し、「Module」にて選択した MCA の IP アドレスが表示
•memo		入七 計測内に ちば
•acq. LED		計例中に品例
• save LED	,	リストノーク休任中に忠威
•error LEL)	エノ ^ー 死生時点灯 エード「anastrum」またけ[list」を実示
•monsurom	ont modo	「こ」下。「Spectrum」よたは「IISL」で次小 計測エード「rool time」またけ「live time」を表示
•moasurom	ont time	計測に「下。」Teat time]よんな「IIVe time]を次入
•roal time		Uアルタイト(宇計測時間) 計測級了時 maggirgmont time b 生しくかります
•live time		ON を選択中の筆 1CH のライブタイム(右効計測時間) real time - dead time
• dead time		ON を選択中の第1CHのデッドタイム(無効計測時間) real time - live time
•file_size(B	vte)	list モード時保存中のファイルサイズ
•dead time	ratio	ON を選択中の第 1CH のデッドタイムの割合(%)。dead time ÷ real time × 100
・list data buffer リストデ		リストデータ用バッファ状態(%)。100%はオーバーフローを意味します

3.2. config タブ

le	MCA1	IP ad	dress 192.18	58.10.128		Memo Memo	,							acq.	save	error	mode	spectru
	throughput count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	throughput rate(cps) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	dead time ratio(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROI ROI No. ROII : ROIZ : ROI3 : ROI4 : ROI5 : ROI6 : ROI7 : ROI8 :	peak (ch) 0 0 0 0 0 0 0 0 0 0	centroid (ch) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	peal (cour 0.0 0.0 0.0 0.0 0.0 0.0 0.0	k nt) 00 00 00 00 00 00 00	gross (count) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	gross (cps) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	net (count) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	net (cps) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	FWHM (ch) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	FWHM (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	FWHM (ch) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	FWTM (ch) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	measurement mode measuremen time real time live time dead time file size(Byte) dead time ratio list data buffer	real tim 48:00:(00:00:(00:00:(00:00:(0.0(0.0)
	file calibr	ation				-	00.0											СН1
	gain	threshold	LLD	ULD	offset		60.0-											CH2
	: 16384 💌	30	100	16383 🔄	0 1	1	.00.0											CH3
	: 16384 👻	30	100	16383	0	1 3	40.0-											
	: 16384	30	100	16383	0		20.0-											
	16384	30	100	16383	0		00.0-											CH6
ł	16304	30 1	100 [9]	16383	0		80.0-											
	16294	20	100	10303	0	(Le												
	16384	20 101	100	16202 10	0 4		60.0-											
		20	100 [91	10000 [4]	0 13	- tuno	40.0-											
						, ° 1	20.0-											-
1	•					1	00.0-											1
e	ment mode						80.0-											1
he																		
61	ect						60,0-											
							40.0-											
e	ment time(sec)						20.0-											-
00) \$						0.0							_				1
							ó	1000	2000	3000 4	000 5000	6000 70	0008 00	9000 10000	11000 12000	13000 14	000 15000	16383

図 5 config タブ

MCA の機能に関する設定です。

•ON	CH 使用可否。 OFF 時はスペクトルを非表示
•ADC gain	ADC のゲイン
	16384、8192、4096、2048、1024、512、256、128 チャネル(ch)から選択します
 threshold 	波形取得開始のタイミングの閾値を設定します。単位は digit です。設定範囲は 0 から 16383
	です。 デフォルト値は 10 です。 LLD 以下の値に設定します。
•LLD	エネルギーLLD (Lower Level Discriminator)を設定します。 単位は ch です。 この閾値より下の
	ch はカウントしません。threshold 以上かつ ULD より小さい値に設定します。
•ULD	エネルギーULD (Upper Level Discriminator)を設定します。 単位は ch です。 この閾値より上の
	ch はカウントしません。 LLD より大きい値に設定します。

図 6 UUDとULD

•offset	プラス方向のフ	オフセットを設定します。 単位は ch です
•mode	以下の2つの	動作モードから選択します。
	spectrum	スペクトルモードは、リニアアンプ信号の波高値を最大 16384 の ch に格納し、
		スペクトルを作成します。
	list	リストモードは、アンプ信号のタイムスタンプと波高値とCH番号を1つのイベン
		トデータとし、連続的に PC ヘデータを転送し保存するモードです。
•measurement mode	計測モードとし	、て、「real time」または「live time」を選択します。
	real time	予め設定した時間データを計測します。
	live time	有効計測時間(リアルタイムとデッドタイムの差)が予め設定した時間になるまで
		計測します。

•peak detect	ピーク(最大波	高値)の検出方法として、「abs」または「fast」を選択します。詳細は後述の「ピー
	ク検出モードの)設定」を参照ください。
	abs	アブソリュートモード
		thresholdを超えてからピークに到達し減衰していき threshold を下回った時に AD 変換を実行します。より確定的に最大波高値を取得可能。
	fast	ファストモード
		最大波高値を常に監視し到達直後にAD変換を実行します。高計数時の計測 用です。
•measurement time •number of CH	計測時間設定 有効 CH 数で	。設定範囲は 0 から 168 時間 (7 日) です。 す。 機器にあった CH 数が表示されます。

3.3. file タブ

e MCA1	IP ad	dress 192.16	3.10.128		Memo Memo							acg.	save	error	mode	spectrum
 throughput count 0.000 	throughput rate(cps) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	dead time ratio(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROI No. ROI No. ROII : ROI2 : ROI3 : ROI3 : ROI4 : ROI5 : ROI6 : ROI6 :	peak (ch) 0 0 0 0 0 0 0	Memo Memo Memo Memo Memo Memo Memo Memo	peak (count) 0.000 0.000 0.000 0.000 0.000 0.000	gross (count) 0.000 0.000 0.000 0.000 0.000 0.000	gross (cps) 0.000 0.000 0.000 0.000 0.000 0.000	net (count) 0.000 0.000 0.000 0.000 0.000 0.000	net (cps) 0.000 0.000 0.000 0.000 0.000 0.000	FWHM (ch) 0.000 0.000 0.000 0.000 0.000 0.000	EV/HM (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Save FWHM (ch) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Error FWTM (ch) 0.000 0.000 0.000 0.000 0.000 0.000	mode measurement mode measuremen time real time live time dead time file size(Byte) dead time ratio	spectrur real time 48:00:0 00:00:0 00:00:0 00:00:0 0.00
file callb	0.000	0.0	RO18 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	list data buffer	0.0
ctrum ctrum save rtinuous spectrum sctrum file path ¥spectrumcsv sctrum file save in [4]	n save)			28 24 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	80.0										V CH2 V CH3 V CH4 V CH4 V CH5 V CH6 V CH7 V CH8
save file path					11	10.0 - 10.0 -										
flist_ ile number file ile size(Byte) DM idei	name 000000				e 4 2	0.0 - 0.0 - 0.0 - 0.0 -	00 2000	3000 40	00 5000 +	000 7000	1 8000 9 ch	000 10000	11000 12000	13000 14	000 15000 1	5383

図 7 file タブ

計測データのファイル保存に関する設定です。

「spectrum」部

•spectrum save	計測終了時にスペクトルデータをファイルに保存します。ファイルの保存先は後述のフォーマットになります。
•continuous spectrum save	スペクトルデータを設定時間間隔で連続してファイルに保存するか否かを設定します。 「config」タブ内「mode」にて「spectrum」モードを選択時のみ有効です。
•spectrum file path	スペクトルデータファイルの絶対パスを設定します。拡張子無しも可です。 ※注意※
	このファイル名で保存されるのではなく、このファイル名を元にして、データ保存時の時刻情報
	を自動的に付加してファイル名を作成します。ファイル名のフォーマットは以下のとおりです。 例:
	「spectrum file path」に「C:¥Data¥spectrum.csv」、「spectrum file save time(sec)」に「10」と設定し、日時が 2010/09/01 12:00:00 の場合は、
	「C:¥Data¥spectrum_20100901_120000.csv」というファイル名でデータ保存を開始します。 10 秒後に「C:¥Data¥spectrum_20100901_120010.csv」というファイルで保存します。
	※上記「120010」が「120009」または「120011」になる場合もあります。
• spectrum file save interval time(sec)	スペクトルデータの連続保存の時間間隔を設定します。単位は秒です。設定範囲は5秒から 3600秒です。
「list」部	
•list save	リストデータをファイルに保存するか否かを設定します。「config」タブ内「mode」にて「list」を選 択時のみ有効です。
•list file path	リストデータファイルの絶対パスを設定します。拡張子無しも可です。 ※注意※
	このファイル名で保存されるのではなく、このファイル名を元にして、以下に説明する「file number」からはじまる番号が、ファイル名と拡張子の間に0詰め6桁で付加されます。例:
	「list file path」に「C:¥Data¥list.bin」、「list file number」に「0」と設定した場合は、 「C:¥Data¥list000000.bin」というファイル名でデータ保存を開始します。

•list file number	リストデータファイルに付加される番号の開始番号を設定します。0から 999999 まで。 999999
	を超えた場合0にリセットされます。
•file name	現在の設定で保存されるファイル名が表示されます。
 list file size(Byte) 	リストデータファイルの最大ファイルサイズを設定します。
	リストデータ保存中にこのサイズを超えるとファイルを閉じ、「list file number」を1 つ繰り上げた
	新しいファイル名でデータの保存を継続します。

設定右側に位置する「file size(Byte)」には現在保存中のファイルのサイズが表示されます。

3.4. calibration タブ

ile	MCA1	IP ad	dress 192.168	8.10.128		Memo Memo							acq,	save	error	mode	spectrun
o.	throughput count	throughput rate(cps)	dead time ratio(%)	ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (ch)	FWTM (ch)	measurement mode measuremen	real time
	0.000	0.000	0.0	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	time coal time	00,00,0
	0.000	0.000	0.0	RO13 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	rearcine	00.00.0
	0.000	0.000	0.0	RO14 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	live time	00:00:0
	0.000	0.000	0.0	ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time	00:00:0
	0.000	0.000	0.0	RO16 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	file size(Byte)	0.00
	0.000	0.000	0.0	ROI7 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time ratio	0.0
	0.000	0.000	0.0	ROIB :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	list data buffer	0.0
CONTRACTOR OF A DATE OF A	ROI CH (CH1 V nane V nane V nane V nane V	ROI start ROI ch 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163 0 0 163	I end ener) (ch) 883 (ch) 883 (ch) 1383 (ch) 1883 (ch) 1 (ch)	9y 2 4		2 2 2 2 2 2 2	80.0										♥ CH2 ♥ CH3 ♥ CH4 ♥ CH5 ♥ CH5 ♥ CH7 ♥ CH8
	none 💌	0 🔄 16 0 🔄 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	() ()		(j) 1 \$100	40.0 -										
a	ion-					1	20.0-										
h) eV	💮 keV 🍈	manual G	alibration		1	00.0-										1
	centroid	(ch) energy	(ch)				B0.0-										1
1	- 0	- 1332	а	1.000			60.0-										1
e	- 0	- 0	ь	0.000			40.0-										1
ua	ala 1.000 b 0.000	♥ unit MeV ♥					20.0-										

図 8 calibration タブ

ROI (region of residence) 及びエネルギー校正の設定をします。スペクトルピークに ROI を設定することで、ピークのカウント数や半値幅などの算出を行います。

|--|

ROI CH	ROI の対象 能です	きさする CH 番号を選択します。1 つの CH 信号に対し、最大 8 つの ROI を設定可								
ROI start ROI end energy	ROIの開始位置を設定します。単位はエネルギー校正の状況によります。 ROIの終了位置を設定します。単位はエネルギー校正の状況によります。 ピーク位置(ch)のエネルギー値を定義します。 ⁶⁰ Coの場合、1173や1332と設定します。 「calibration」部にて「ch」を選択した場合、ROI間のピークを検出しそのピーク位置(ch)と設 したエネルギー値から keV/chを算出し、半値幅の算出結果に摘要します。									
「calibration」部										
calibration の種類	以下の3~ ch eV	oから X 軸の単位を選択します。 ch(チャネル)単位表示 ROIの「FWTM」の「FWHM」などの単位は任意になります。 eV単位表示。1 つのスペクトルにおける2種類のピーク(中心値)とエネルギー値の 2 点校正により、ch が eV になるように 1 次関数 y=ax+b の傾き a と切片 b を算出し X 軸に設定します。 ROIの「FWTM」の「FWHM」などの単位は"eV"になります。								
	keV manual	 kel 単位表示。1つのスペクトルにおける2種類のピーク(中心値)とエネルギー値の2点校正により、chがkeVになるように1次関数y=ax+bの傾きaと切片bを算出しX軸に設定します。 ROIの「FWTM」の「FWHM」などの単位は"keV"になります。 例: 5717.9chに⁶⁰Coの1173.24keV、6498.7chに⁶⁰Coの1332.5keVがある場合、2点校正よりaを0.20397、bを6.958297と自動算出します。 1次関数y=ax+bの傾きaと切片bと単位ラベルを、「manual a」と「manual b」と「unit」にて任意に設定し、エネルギー校正の際に使用します。 								
ROI	エネルギー	ー校正の対象 ROIを選択します。右隣の「centroid」と「energy」には、選択中の ROI								

の中心値と設定中のエネルギー値が表示されます。例えば「ROI1」と「none」を選択した場合は、ROI1のピーク中心値と予め設定した「energy」により1点校正を行います。「ROI1」と「ROI2」を選択した場合は、ROI1とROI2のピーク中心値と予め設定した「energy」により2点校正を行います。

a および b

エネルギー校正の算出結果である、グラフ横軸の作成するための一次関数 y=ax+b における 傾きを a に、切片を b に表示します。

calibration ボタン calibration の種類に応じてエネルギー校正を実行します。実行後にグラフ横軸に適用される 一次関数 y= ax+ b の傾き a と切片 b が算出され、下側の「a」と「b」に表示されます。計算方法 につきましては、後述の「9.5.2 点校正の計算方法」を参照ください。

> 例えば、calibration部にて「keV」を選択し、「calibration」ボタンをクリックすると、下図のように グラフの横軸単位、ROIの設定値、ROIの算出結果の単位も「keV」になります。

エネルギー校正実行前

 \downarrow

エネルギー校正実行後

module MCA1	IP add	ress 192-168	8.10.128		Memo Memo	•						acq.	save	error	mode	spectru
H Throughy CH No. throughy Count count CH1 : 76.60 CH2 : 0.00 CH3 : 0.00 CH4 : 0.00 CH4 : 0.00 CH4 : 0.00 CH5 : 0.00 CH6 : 0.00 CH7 : 0.00	t throughput rate(cps) k 1.195k 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000	dead time ratio(%) 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROI No. ROI No. ROI 1 : ROI 2 : ROI 3 : ROI 4 : ROI 5 : ROI 6 : ROI 6 :	peak (ch) 10285 11683 0 0 0 0 0 0	centroid (ch) 10284.91 11682.17 0.00 0.00 0.00 0.00 0.00	peak (count) 225.000 172.000 0.000 0.000 0.000 0.000 0.000	gross (count) 3.461k 2.889k 0.000 0.000 0.000 0.000 0.000	gross (cps) 55.823 46.597 0.000 0.000 0.000 0.000 0.000	net (count) 3.134k 2.889k 0.000 0.000 0.000 0.000 0.000	net (cps) 50.548 46.597 0.000 0.000 0.000 0.000 0.000	EWHM (ch) 12.785 14.367 0.000 0.000 0.000 0.000 0.000	FWHN (%) 0.124 0.123 0.000 0.000 0.000 0.000 0.000	FWHM (keV) 1.455 1.635 0.000 0.000 0.000 0.000 0.000	FWTM (keV) 3.106 3.404 0.000 0.000 0.000 0.000 0.000	measurement mode measuremen time real time live time dead time file size(Byte) dead time ratio	real time 48:00:0 00:01:0 00:00:5 00:00:0 0.00 4.6
.H8 : 0.0	0 0.000	0.0	ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	list data buffer	0.0
ROI CH 1 CH 2 CH 3 none 6 none 6 none 7 none 8 mone 0 ch 0 ch	ROI start (kev) ROI (kev) 1350 10% 1327 10% 1327 10% 12 10% 10%	end ener. () 2 (\$4) 117 2 (\$4) 133 (\$4) 13	rgy () 3 (4) 2		counts (Ineaer)	220.0 - 160.0 - 160.0 - 140.0 - 140.0 - 120.0 - 80.0 - 80.0 - 20.0 - 20.0 - 3 1		00 400	500 600	200 s00		1100 12	0 1300 140	0 1500 1	50 170 1800	

図 9 calibration 部にて「keV」を選択した場合

3.5. グラフ

グラフ Y mapping CH1 から CH8 のスペクトルを表示します

グラフのY軸表現をlinear(線形)またはlog(対数)から選択します。設定に伴いY軸のラベルも変更されます。

図 10 「Y mapping」にて「linear」(左)と「log」(右)を選択

X 軸範囲 X 軸上で右クリックして「自動スケール」をチェックすると自動スケールになります。チェックを 外すと自動スケールでなくなり、X 軸の最小値と最大値が固定になります。最小値または最大 値を変更する場合は、マウスのポインタを変更する数値の上に置き、クリックまたはダブルクリ ックすることで変更できます。

Y 軸範囲 Y 軸上で右クリックして「自動スケール」をチェックすると自動スケールになります。チェックを 外すと自動スケールでなくなり、Y 軸の最小値と最大値が固定になります。最小値または最大 値を変更する場合は、マウスのポインタを変更する数値の上に置き、クリックまたはダブルクリ ックすることで変更できます。

> カーソル移動ツールです。ROI 設定の際カーソルをグラフ上で移動可能です。 ズーム。クリックすると以下の6種類のズームイン及びズームアウトを選択し実行できます。

図 11 グラフ ズームイン及びズームアウトツール

(1)四角形 ズームこのオプションを使用して、ズーム領域のコーナーとするディス プレイ上の点をクリックし、四角形がズーム領域を占めるまでツールをド ラッグします。
(2)X-ズーム X 軸に沿ってグラフの領域にズームインします。
(3)Y-ズーム Y 軸に沿ってグラフの領域にズームインします。
(4)フィットズーム 全ての X および Y スケールをグラフ上で自動スケールします。
(5)ポイントを中心にズームアウト ズームアウトする中心点をクリックします。
(6) ポイントを中心にズームイン ズームインする中心点をクリックします。
パンツール。プロットをつかんでグラフ上を移動可能です。

3

+

4. 設定

MCA の主な設定について記載します。

4.1. スレッショルドの設定

スレッショルドの設定は以下の2つに影響します。

① この閾値を超えたタイミングでタイムスタンプします。タイムスタンプされた情報は list データに反映されます。

② この閾値を超えた時から AD 変換及びピーク検出を開始します。

この設定をあまりに大きい値に設定すると、低エネルギーの波高値を取得できなくなります。逆に設定が小さ過ぎるとノイズをひろってしまいます。

はじめ 10 から 20 の値を設定し、スペクトルを見ながらノイズとの境目を判別します。 設定は LLD 以下とします。

4.2. ピーク検出モードの設定

最大波高値の検出方法として、「config」タブ内「peak detect」にて「abs」または「fast」を選択します。

「abs」は「アブソリュートモード」で、thresholdを超えてからピークに到達し減衰していき threshold を下回った時に AD 変換を実行します。より確定的に最大波高値を取得可能。

「fast」は「ファストモード」で、最大波高値を常に監視し到達直後に AD 変換を実行します。高計数時の計測用です。

図 12 ピーク検出方法(アブソリュートモードとファストモード)

5. 計測

5.1. 初期化設定

(1)「config」タブ内にて「spectrum」モードまたは「list」モードのいずれかを選択します。

MCA 3	1.0																	CH NC	\$3.1.0																B S
File Co	nig Clear	Stert	Stop															File	Config Cle	ar Start	Stop														
module	MCA1	9 8	ddress 192.54	8.33.128		Neno Neno							300	save	CITER	node	spectrum	mod	NCA1	• IP as	kiress 192.16	8.10.128		Memo Memo							300	save	error	mode	list
COLUMN	there also a	fam.eke.d	dead time	ROI	and	enderid	-			-	-	Excert	ELLAND.	(DATE: N	RATH	measurement	real time	Low-	threaderd	fam.de	dead firm	ROU	-	controld	east			-		Enter	Room	Room	ENTH	measurement	real time
CH NO.	count	rate(cps)	ratio(%)	NUL NO.	(ch)	(ch)	(court)	(court)	(cps)	(count)	(cps)	(ch)	(%)	CANER .	PAUM	node	real care	Con N	court	rate(cps)	rato(%)	NUL NO.	(ch)	(ch)	(count)	(count)	(cps)	(count)	(cps)	(ch)	(%)	(kein)	(keV)	riode	rear cane
CH1 :	0.000	0.000	0.0	ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	time	48:00:00	CH1	: 0.000	0.000	0.0	ROI1 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	time	48:00:00
012 :	0.000	0.000	0.0	8012 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	real time	00:00:00	012	: 0.000	0.000	0.0	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	real time	00:00:00
CH3 :	0.000	0.000	0.0	8003 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Ive time	00:00:00	CH3	: 0.000	0.000	0.0	8013 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	live time	00:00:00
CHI I	0.000	0.000	0.0	R054 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead from	00.00.00	CHI	0.000	0.000	0.0	8014 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time	00.00.00
06:	0.000	0.000	0.0	ROIS :	•	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	En continent	00.00.00	06	. 0.000	0.000	0.0	ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	En church and	00.00.00
00.1	0.000	0.000	0.0	8017.1		0.00	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	the same syster	0.000	00	. 0.000	0.000	0.0	8017.1	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	THE GARGEYORY	0.000
048 :	0.000	0.000	0.0	8058 :		0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time ratio	0.0	CHE	: 0.000	0.000	0.0	8018 :		0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	dead time ratio	0.0
						0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	na cana coma								0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	In other come	
contg	fie calle	ation					20.0-5										12 cm 12	cosh	fie ca	ibration					-0x-										
	ADC					2	-0.05										Di per 💌		ADC																N DR
City City	gain Internet (threshold	LLD	ULD .	offset	2	-0.04											CN I	gain .	threshold	LLD	ULD c	find in i												
CON	14184	N (N)	200 (91	10003 (91)	 (w) (w) 												DI CHH		14184		200 14	15363 (V) V													12 CH4 1
(243	16364	10 4	200 0	16363 (0)	0 101												1 OK 📉		16364	1 10 10	200 10	16363 (4)	14												1 CH6
011	16364	30 141	200 44	16363 (-0-)	0 101	-	2000										10 046	0	1 16204	10 10	200 14	16383 0 0	14												1 0% M
CHS	16364	20 0	200 0	16303 0	0 0	3	20.0-										1 OK 1	0	11.384	20 0	200 0	16363 0 0	0	9	0.0-										V CH7
CHS	: 16364 -	30 4	200 0	16363 -0-	0 0	23	0.0										V CHE	0	1 16364	· 30 0	200 🕂	16363 0 0	0	1.00											CHE 📉
CH7	: 16364 🖌	30 4	200 4	16383 4	0 0	ę.,	10.0											0	7 : 16364	 30 4 	200 4	16383 44	(4) (3											
CHR	: 16364 💌	20 0	200 0	16100 0	0 0	ą.,	0.0-1											0	15384	20 0	200 0-	16100 0	(#i	4											
made						8.																		8											
spectru						1	20.0-1											let.																	
L	Send.					3	-0.06												Sand	_					2.0-										
real time							-0.08										-	real	free w																
	050						-0.0																												
peak de	bect																	pea	detect																
THEOLOG	ment time(sec)						-0.0											198	unement time(a	ec)															
46:00:0	2 191						0.0	the star	-		site at		the set of	11. 11.		day and and		401	0:00 (9)						1.0-		5 5	di di			to the second	L. L.	in the s	the star of	
runber	of CH							1000 2000	2000 40	00 9000	4000 /00	ch dh	2000 10000	11000 12000	1,000	+000 15000	teater	140	ber of CH						0 10	200	JUG 400	500 600	/00 00	2 900 3 ReV	000 1100 1	200 1.00 1	400 1500 1	200 1/00 100	0 1867
8							Ymap	ping			(th	8	128 8.00	ounts (Inser)	8 10	112 14-1221	101	8							Tener	ng			2 aV	1	8 12 19	(act) statute	8 11	10 14 100	101
							8 In	en () 10g					(Billings	and an of the state of	aller										0.00	· · · · · · · · · · · · · · · · · · ·					Seconding (- Alices		
																		-																	

図 13 「mode」にて「spectrum」(左)と「list」(右)を選択

- (2) メニュー「Config」をクリックします。実行後、MCA内全設定がMCAに送信されます。
- (3) メニュー「Clear」をクリックします。実行後、MCA 内スペクトルデータが初期化されます。 前回の計測したスペクトルや計測結果を継続する場合は、「Clear」をクリックせずに次の計測を開始します。

5.2. 計測開始

- ・メニュー「Start」をクリックすると、計測を開始します。
- ・「CH」部に各 CH の計数の状況が表示されます。
- ・「acq」LED が点滅します。
- ・「measurement time」に設定した計測時間が表示されます。
- ・「real time」に MCA から取得したリアルタイムが表示されます。
- ・「live time」に MCA から取得したライブタイムが表示されます。
- ・「dead time」に MCA から取得したデッドタイムが表示されます。
- ・「dead time ratio」に「dead time」: 「real time」×100の値が表示されます。

【スペクトルモードの場合】

- ・「mode」に「spectrum」と表示されます。
- ・「ROI」部に各計算結果が表示されます。
- ・グラフにスペクトルが表示されます。

図 14 spectrum モードでの計測

【リストモードの場合】

- ・「mode」に「list」と表示されます。
- ・リストモード時は「save」LED が点滅し、「file size(Byte)」に現在保存中のファイルサイズが表示されます。
- ・「list data buffer」に MCA のリストデータ送信バッファの状態が表示されます。100%に到達した場合オーバーフローと なり、データを取りこぼすことになります。全 CH の「throughput rate(cps)」の和が 160kcps を超えないようにご使用く ださい。
- ・スペクトルは表示されません。

図 15 list モードでの計測

5.3. 計測停止

- ・「measurement mode」が「real time」の場合、「real time」が「measurement time」に到達すると計測は終了します。
- ・「measurement mode」が「livel time」の場合、「live time」が「measurement time」に到達すると計測は終了します。
 ・計測中に停止する場合はメニュー「Ston」をクリック」ます。ま行後計測を停止します
- ・計測中に停止する場合は、メニュー「Stop」をクリックします。実行後計測を停止します。

6. ファイル

(1)ファイル形式

6.1. スペクトルデータファイル

```
カンマ区切りのテキスト形式
(2)ファイル名
 任意
(3)構成
 「Header」部と「Calculation」部と「Status」部と「Data」部からなります
・Header(ヘッダー)部
               計測モード。Real time または Live time
Measurement mode
Measurement time
               計測時間。単位は秒
Real time
               リアルタイム
Live time
               ライブタイム
               デッドタイム
Dead time
Start Time
               計測開始時刻
End Time
               計測終了時刻
Memo
               メモ
※以下 CH 毎に保存
               ADC ゲイン(0:16384、1:8192、2:4096、3:2048、4:1024、5:512、6:256、7:128)
ADG
               スレッショルド
THR
               エネルギ LLD
LLD
ULD
               エネルギ ULD
               オフセット
OFF
※CH 毎はここまで
               モード(0:spectrum、1:list)
MOD
MMD
               計測モード(0:real time、1:live time)
MTM
               計測時間
               外部クロック選択※未使用
CLS
PDS
               ピーク検出(0:abs、1:fast)
•Calculation(計算)部
※以下 ROI 毎に保存
ROI_ch
               ROIの対象となった入力チャンネル番号。
ROI_start
               ROI 開始位置
ROI_end
               ROI 終了位置
               ROI 間のピーク位置(ch)
peak(ch)
centroid(ch)
               ROI間の中心位置(ch)
peak(count)
               最大カウント
gross(count)
               ROI 間のカウントの総和
gross(cps)
               ROI 間のカウントの総和÷real time
               ROI 間のバックグラウンドを差し引いたカウントの総和
net(count)
net(cps)
               ROI 間のバックグラウンドを差し引いたカウントの総和÷real time
FWHM(ch)
               半値幅(ch)
FWHM(%)
               半値幅(%)。半値幅÷ROI 定義エネルギー×100
FWHM
               半値幅
FWTM
               1/10 幅
```

ROI 間のピークのエネルギー値

Energy

・Status (ステータス)部
※以下 CH 毎に保存
throughput count 処理したイベント数
throughput rate 1秒間に処理したイベント数
dead time ratio(%) デッドタイムの割合

・Data (データ)部

各チャンネル毎のスペクトルデータ。最大16384点。横軸の単位はグラフの状態を反映。

6.2. リストデータファイル

(1)ファイル形式

バイナリ、ビッグエンディアン形式

(2)ファイル名

「config」タブ内「list file path」に設定したファイルパスに、「file number」を0詰め6桁付加したものになります。

例1:「list file path」に"D:¥data¥123456.xls"、「number」に"1"と設定した場合、"D:¥data¥123456_000001.xls"。 例2:「list file path」に"D:¥data¥123456"、「number」に"100"と設定した場合、"D:¥data¥123456_000100"。

「list file size」に到達すると、保存中のファイルを閉じます。その後、「list file number」を自動で1つ繰り上げ新しいファイルを開き、データのファイル保存を継続します。

(3)構成

1 イベントあたり 80bit (10Byte、5WORD)

Bit79		76	75							64
空き	[30]				1	ABS[4332]				
63										48
				ABS[31	.16]					
47										32
				ABS[15	0]					
31 29	28									16
空き[20]]	PHA[12	20]				
15				7	6		3	2		0
		空き	[80]			UNIT[30]			CH[20]	

図 16 リストデータ(80 bit)構成

•Bit79 から Bit76	空き。4Bit
・Bit75 から Bit32	ABS(アブソリュート)カウント。44Bit 1Bit あたり 40ns。 最大計測時間は約 195 時間(48≒2 ⁴⁴ * 40ns)
•Bit31 うら Bit30	空き。3Bit
•Bit28 うら Bit16	PHA(波高値)。
・Bit15 から Bit7	空き。9Bit。
・Bit6 から Bit3	ユニット番号。 4Bit ユニット 1 は 0、ユニット 16 は 15
・Bit2 から Bit0	CH 番号。3Bit

7. コマンド

7.1. 概要

MCA に対する設定及びデータの取得はイーサネット経由 TCP/IP によって行っています。特殊なライブラリなどは使用していませんので、通信フォーマット(コマンド)に準拠すれば、任意のアプリケーションでも MCA を制御可能です。

コマンドの種類は、「Config(設定)」、「Status(ステータス)」、「Data(データ)」の3つに大別されます。MCA ではこの3 種類のコマンドを競合せずに送受信できるよう、3つのタスクが動作しており、それぞれに通信ポートを定義しています。 Config 用ポートは 5000 番、Status 用ポートは 5001 番、Data 用ポートは 5002 番になっています。

以下にコマンドのフォーマットや種類について記載します。

7.2. コマンドフォーマット

コマンドのフォーマットは、「コマンド部」と「パラメータ部」と「応答部」からなります。

図 17 コマンドフォーマット モード設定コマンド MODW の場合

「コマンド部」は、ASCIIコードの3文字と、設定の種類1文字を加えた計4文字4Byteです。設定の種類は、設定は「W」、設定要求は「R」となります。

「パラメータ部」は、単一設定とチャンネル設定があります。 単一設定の場合のデータ長は 4Byte になります。 チャンネル設定の場合のデータ長は、CH1 から CH8 の設定を連結した 32Byte (8CH*4Byte)になります。

「応答部」は、MCAからの戻り値です。設定や設定要求やデータ要求コマンドの送信後、MCAから応答があります。 コマンド送信後は、該当する応答 Byte 数分データを受信するようプログラムしなければなりません。

設定の場合は、エラー無しなら「OK」、エラー有りなら「NG」が MCA から返ってきます。

設定要求の場合は、MCAからはエラーが無ければ送信したコマンド部の後に「A」を追加した文字列と値が返ってきます。エラーの場合は「NG」が返ってきます。

データ要求の場合は、1回のデータ転送サイズを16384Byteとし、スペクトルデータやイベントデータは分割して受信します。

ネットワークバイトオーダーはビッグエンディアンです。上記 MODW コマンドにて1と設定する場合は、MCA に対し "4D4F445700000001"と送信すると、OK である"4F4B"が返信されてきます。

7.3. コマンドの種類

コマンドの種類は以下のように分類されます。概要及びその例を記載します。

(1) 単一設定

動作モード設定など、チャンネル毎ではない設定。

(2) 単一設定要求

動作モード設定要求など、チャンネル毎ではない設定要求。

(3) チャンネル設定

LLD 設定など、チャンネル毎の設定。

(4) チャンネル設定要求

LLD 設定など、チャンネル毎の設定要求。

(5) ステータス

入力カウント数などのステータス要求。

(6) スペクトルデータ

スペクトルデータ要求。スペクトルデータは符号無し 4Byte 整数で、チャンネルあたり 4096 点。4回に分けてデー タを取得します。取得したデータを連結して1つのスペクトルデータとします。 コマンドフォーマットを「HxyR」とし、x がチャンネル番号(0から7)、y がブロック番号(0から3)となります。

チャネル1ブロック番号0スペクトルデータ取得の場合

(7) イベントデータ

イベントデータ要求。

LIST データサイズの問い合わせとLIST データの読み込みの2段階でLIST データを連続的に取得します。 まずコマンドの応答とデータ長を取得します。データ長はASCII文字列ではなくバイナリ(ビッグエンディアン)で す。1回のデータ受信量は20,000Byteです。応答データ長が20,000より大きい場合は、データ長分を20,000で 割った回数分、連続して20,000Byte分データを読み込みます。

7.4. コマンド一覧

番号	種別	MCA ポート 番号	内容	設定範囲	動作	コマント゛	コマント [*] 長 (Byte)	応答 (Byte)													
1			ADC KA	0.7	設定	ADGW	36	2													
1			ADC 7 17	07	設定要求	ADGR	4	36													
2			タイミング	0 16383	設定	THRW	36	2													
			スレッショルト	010303	設定要求	THRR	4	36													
3	CH 設定		エネルギーIID	0 16383	設定	LLDW	36	2													
0			SAMA LLD	010303	設定要求	LLDR	4	36													
4			エネルギー IID	0 16383	設定	ULDW	36	2													
т				010303	設定要求	ULDR	4	36													
5			オフセット	0 16383	設定	OFFW	36	2													
0		5000	47 271	010505	設定要求	OFFR	4	36													
6		5000	動作モート	0 1	設定	MODW	8	2													
0			301111	0, 1	設定要求	MODR	4	8													
7			手測エート	0 1	設定	RLSW	8	2													
·				0, 1	設定要求	RLSR	4	8													
8	単一				ピーク検出	0, 1	設定	PDSW	8	2											
0	設定							1									方法選択	0, 1	設定要求	PDSR	4
Q				計測時間	0 244-1	設定	MTMW	12	2												
3			訂 例时间	02**=1	設定要求	MTMR	4	12													
10				計測開始停止	0,1	設定	AQSW	8	2												
11			クリア	_	設定	CLRW	4	2													
12	ステータス	5001	ステータス	_	ステータス要求	STUR	4	436													
13	データ	5002	スペクトル	_	データ要求	HxyR x:CH 07 y:ブロック 0	4	16388													
14			リスト(イヘ・ント)	-	データ要求	LISR	4	20000													

7.5. コマンド説明

CH 設定

1. ADC ゲイン

説明	:	ADC ゲイン(チ	ヤネル・ビンサイズ)
コマンド	:	設定:ADGW	(コマンド長 36Byte、応答 2Byte)
		要求:ADGR(コマンド長 4Byte、応答 36Byte)
ポート番号	:	5000	
種類	:	チャネル設定	
範囲	:	0から7	
		0:16384	4:1024
		1:8192	5:512
		2:4096	6:256
		3:2048	7:128

2. タイミングスレッショルド

1 -	ヘイン ハイシンミ	3/21.	
	説明	:	トリガータイミングの閾値
	コマンド	:	設定:THRW (コマンド長 36Byte、応答 2Byte)
			要求:THRR (コマンド長 4Byte、応答 36Byte)
	ポート番号	:	5000
	種類	:	チャンネル設定
	範囲	:	0 から 16383

3. エネルギーLLD

:	エネルギーLLD(Lower Level Discriminator)
:	設定:LLDW(コマンド長 36Byte、応答 2Byte)
	要求:LLDR(コマンド長 4Byte、応答 36Byte)
:	5000
:	チャンネル設定
:	0 から 16383
	::

4. エネルギーULD

説明	:	エネルギーULD(Upper Level Discriminator)
コマンド	:	設定:ULDW (コマンド長 36Byte、応答 2Byte)
		要求:ULDR(コマンド長 4Byte、応答 36Byte)
ポート番号	:	5000
種類	:	チャンネル設定
範囲	:	0 から 16383

5. オフセット

説明	:	オフセットの設定
コマンド	:	設定:OFFW (コマンド長 36Byte、応答 2Byte)
		要求:OFFR(コマンド長 4Byte、応答 36Byte)
ポート番号	:	5000
種類	:	チャンネル設定
範囲	:	0 から 16383

単一設定

6.	動作モード		
	説明	:	動作モード。spectrum(スペクトル)モードまたは list(リスト)モードを選択設定
	コマンド	:	設定:MODW(コマンド長 8Byte、応答 2Byte)
			要求:MODR(コマンド長 4Byte、応答 8Byte)
	ポート番号	:	5000
	種類	:	単一設定
	範囲	:	0または1。
			0:スペクトルモード
			1:リストモード

7. 計測モード

説明	:	計測モード。real time(リアルタイム)または live time(ライブタイム)を選択設定
コマンド	:	設定:RLSW(コマンド長 8Byte、応答 2Byte)
		要求:RLSR(コマンド長 4Byte、応答 8Byte)
ポート番号	:	5000
種類	:	単一設定
範囲	:	0 または 1。
		0:real time
		1:live time

8. ピーク検出方法選択

/ 10 11/11/12/22	z 1/ <	
説明	:	ピーク(最大波高値)の検出方法として、abs(アブソリュートモード)または fast(ファストモ
> d>		
コマンド	:	設定:PDSW (コマンド長 8Byte、応答 2Byte)
		要求:PDSR (コマンド長 4Byte、応答 8Byte)
ポート番号	:	5000
種類	:	単一設定
範囲	:	0から1
		0: abs
		1: fast

9. 計測時間

説明

: 計測時間

パラメータ部を 8Byte (64Bit) に拡張し、ビッグエンディアン (MSB First) にて 44Bit 分設 定する。上位 20Bit は 0 とする。

M T M W X00 X00 X0F XFF XFF XFF XFF XFF XFF

:	設定:MTMW (コマンド長 12Byte、応答 2Byte)
	要求:MTMR(コマンド長 4Byte、応答 12Byte)
:	5000
:	単一設定
:	0 から 2 ⁴⁴ -1
	1Bit あたり 40ns なので、最大計測時間は約 195 時間 (48≒2 ⁴⁴ * 40ns)。
:	単一設定ですが 12Byte であることに注意してください。
	::

10. 計測開始停止

開始停止		
説明	:	計測開始、停止の選択設定。ABS カウンタクリア。
コマンド	:	設定:AQSW(コマンド長 8Byte、応答 2Byte)
ポート番号	:	5000
種類	:	単一設定
範囲	:	0から1
		0:計測停止
		1:計測開始
備考	:	APV8208X はスペクトルクリア

11. クリア

説明	:	スペクトルデータのクリア。
コマンド	:	CLRW
コマンド	:	設定:W(コマンド長 4Byte、応答 2Byte)
ポート番号	:	5000
種類	:	単一設定
備考	:	APVv8208X ではスペクトルクリア無し。

ステータス

12. ステータス

内容

説明	:	ステータス情報の要求

コマンド : 要求:STUR (コマンド長 4Byte、応答 436Byte)

ポート番号 : 5001

種類 : ステータス

: 以下の情報を連結したもの。サイズは 4362Byte。ビッグエンディアン(MSB First)です。

備考: 18CH 分の領域が確保されています。2CH 及び 4CH の製品をご使用の際は有効 CH 分ご使用ください。

悉号	先頭	内容	サイズ
шŊ	位置	1 171.	(Byte)
1	0	応答ヘッダ「STUA」	4
2	4	計測状態。1:計測中	4
3	8	(未使用)	32
4	40	スループットトータルカウント(8CH分、4Byte/CH)	30
4	40	信号処理したトータルカウント数	52
5	72	(未使用)	32
6	104	(未使用)	32
7	136	(未使用)	32
0	169	スループットカウントレート(8CH分、4Byte/CH)	20
8 108		1 秒間に信号処理したカウント数	32
9	200	(未使用)	32
10	232	(未使用)	32
11	264	ライブタイム(8CH 分、8Byte/CH)	64
12	328	デッドタイム(8CH 分、8Byte/CH)	64
13	392	リアルタイム(40ns/カウント)	8
11	400	ライブタイム(40ns/カウント)	8
12	408	デッドタイム(40ns/カウント)	8
		LIST バッファ	
		4Byte 毎に以下の並びで格納されています。	
14	416	・最大バッファサイズ	4
14	410	・現在バッファサイズ	4
		・先頭位置	4
		・末尾位置	4
15	432	CPU スループット	4
合計			436

データ

13. スペクトル

•										
説明	:	スペクトル	~データ要	求						
コマンド	:	要求:Hxy	yR (⊐¬	マンド長 4B	yte、応答	16388Byte	.)			
ポート番号	:	5002								
種類	:	データ								
内容	:	コマンド HxyR の x は CH 番号です。								
		0:CH1	1:CH2	2:CH3	3:CH4	4:CH5	5:CH6	6:CH7	7:CH8	
		コマンド H	-IxyR の y	はブロック	番号です。	yは0か	ら3を設定	します。4	つのブロック	のデ

ータを取得することで 1CH 分のスペクトルを取得します。 1CH あたりのスペクトルデータの点数は 16384 点です。データサイズは 16384*4Byte より 65536Byte です。

MCAの1回の最大転送サイズは16384Byteなので1度に全データを転送できず、4ブ ロック(4=65536/16384)に分けて転送します。

例:CH1のスペクトルデータを取得する場合は、まず「H00R」を送信して1/4データを取得し、次に「H01R」を送信して2/4データを取得、次に「H02R」を送信して3/4データを取得し、取得した4回分のデータを連結します。

受信データ 16388Byte の内、先頭から 4Byte は応答ヘッダ(例:H10A)です。

コマンド部

応答部

7.6. リストデータ処理フロー

PC 側のリストデータの受信は、MCA 側に対しリストデータの保有するデータ長を問い合わせ、ある一定の量(20000 バイト)以上になった場合、MCA から送信されてくるので、それに合わせて受信することになります。 以下に、PC 側のリストデータ受信と MCA 側のリストデータ送信に関する処理フローを記載します。

図 18 リストデータ処理フロー

- (1) PC 側の「LISR」コマンドの発行頻度は 10ms から 100ms 間隔が目安です。
- (2) MCA 側は、リストデータを保持するために循環型リングバッファを 4Mbyte(2M ワード)または 8Mbyte(4M ワード)を持っています。リングバッファの書込ポインタと読込ポインタの位置はステータス受信コマンド「STUR」 コマンドの応答で取得可能です。

8. 機能

9.1. GATE 信号によるイベントデータ取得

ある事象発生時にその時のイベントデータを取得したい場合は、フロントパネルのLEMOコネクタ「GATE」に対しTTL の信号を入力します。High の時が計測をし、Low の時は計測しません。

(1) APG7300A(L)の外部入力 GATE のタイミング

外部入力 GATE の適切なタイミングはピーク検出モードにより異なります。ピーク検出モードは付属ソフトウェアの「config タブ」の「peak detect」の項目により「fast(ファストモード)」か「abs(アブソリュートモード)」を選択できます。操作の方法はソフトウェアマニュアルをご参照ください。

① ファストモードにおけるゲートタイミング

ファストモードでは入力信号の負勾配によりピークを検出し、その後 500ns の A/D 変換処理時間を経てピーク値を確定します。

外部入力ゲート信号は入力信号ピークをカバーし、ピーク位置より最低 600ns の間 High レベル^{*1}を保持する必要があります。また、ピーク検出タイミングのジッター等を考慮し、確実なゲーティングを行うためには 1000ns 以上のゲート幅を推奨いたします。

図 19 ファーストモードにおけるゲートタイミング

※1 ゲート入力信号は 0.8V 以下を LOW レベル 2.0V 以上を High レベルと判定しております。最大入力電圧は 5V です。

② アブソリュートモードにおけるゲートタイミング

アブソリュートモードでは入力信号がスレッショルドレベル V_{tb}を超えたタイミングで最大電圧値を監視・保持を開始します、その後再び入力信号がスレッショルドレベルを下回ったタイミングで A/D 変換処理が行われ、500nsの処理時間を経てピーク値を確定します。

外部入力ゲート信号は入力信号がスレッショルドレベルを超えている領域(A)とその後の処理時間(B)の最低 600nsの間Highレベル*1を保持する必要があります。また、スレッショルドコンパレータのジッター等を考慮し、確 実なゲーティングを行うためには(B)は1000ns以上の幅を確保することを推奨いたします。

図 20 アブソリュートモードにおけるゲートタイミング

※1 ゲート入力信号は 0.8V 以下を LOW レベル 2.0V 以上を High レベルと判定しております。最大入力電圧は 5V です。

9.2. VETO 信号によるイベントデータ破棄

ある事象発生時にその時のイベントデータを破棄したい場合は、フロントパネルのLEMOコネクタ「VETO」に対しTTL の信号を入力します。Lowの時が計測をし、Highの時は計測しません。タイミングの考え方は前術のGATE 信号と同 様です。

9.3. FWHM(半値幅)の算出

「ROI」部内にある FWHM (Full Width at Half Maximum)は、以下の通りに算出されています。

- (1) スペクトルにおける ROI Start と ROI end 間の最大値 fmax を検出します。
- (2) スペクトルと ROI start の交点と、スペクトルと ROI end の交点を直線で結びます。その直線とピーク値 fmax から x 軸へ垂直におろした線との交点を求めバックグラウンドオフセット(offset)を算出します。
- (3) fmax から offset を差し引いた部分の 1/2 を算出し、X 軸と平行した直線 L1 を引きます。
- (4) スペクトルとL1 が交差する2 点を求めるため、交差する前後点 P1とP2、及び P3とP4を検出します。
- (5) P1とP2を結ぶ直線L2と、同じくP3とP4を結ぶ直線L3を引きます。
- (6) L1 と L2 の交点の X 座標 x1 と、同じく L1と L3 の交点の X 座標 x2 を求めます。
- (7) x2とx1の差をFWHMとします。

9.4. gross (グロス) カウント及び net (ネット) カウントの算出

「ROI」部内にある「gross」カウント及び「net」カウントは、コベル法で算出しています。

- (1)「gross」カウントは、ROI Start と ROI end 間のカウントの総和です。
- (2)「net」カウントは、「gross」カウントから background (バックグラウンド)カウントを差し引いたピークの正味カウント(上図の青色の斜線部分)です。
- (3) background (バックグラウンド) カウントは、ROI start とスペクトルの交点 ns と、ROI end とスペクトルの交点 ne を 直線で結びます。ROI start とns とne と ROI end の 4 点を囲む四角形の面積(上図の桃色の線部分)です。

9.5.2 点校正の計算方法

グラフの X 軸単位目盛をエネルギー(keV)にするために、2 つエネルギーピークの centroid を使用した 2 点校正を行っています。

「calibration」タブ内にて、ラジオボタン「ch」以外の「eV」または「keV」または「manual」を選択します。 次に、「ROI」にてエネルギー校正の基準となるピークを着目している ROI の番号を選択します。2 つの ROI を選択し た場合は2点校正になり、1 つの ROI と「none」を選択した場合は1点校正となります。選択した内容により 「centroid(ch」」と「energy」に対応する値が自動的に反映されます。右側に位置する「a」と「b」に、以下の式にて算出さ れた、一次式 y=ax+b の傾き a と切片 b が自動で反映されます。

> a = (energy1-energy2) / (centrid1-centroid2) b = y - ax

例とし、Co-60の1173.2keVの centrid が 5278.5ch、1332.5keVの centrid が 5997.4chの場合は、

 $a = (1332.5 - 1173.2)/(5997.4 - 5278.5) = 0.221589, b = 1332.5 - 0.221589 * 5997.4 = 3.544902_{\circ}$

以上により、「a」には 0.221589、「b」には 3.544902 と自動で反映され、グラフの横軸の単位目盛は、一次式 0.221589 * ch + 3.544902 にて作成されます。

9. ネットワーク情報の変更

MCAが持つ、IPアドレスとサブネットマスクとデフォルトゲートウェイといったネットワーク情報を、DSP MCA ソフトウェアから変更可能です。以下にその設定方法を記載します。

※注意※

DSP 自体での現在の設定値の確認や、直接設定する場合は、後述の「CPU ボードでの設定方法」を参照ください。

9.1. MCA ソフトウェアでの設定方法

(1) メイン画面「IP address」には現在の IP アドレスが反映されています。メニュー「Edit」-「IP configuration」をクリックします。

86576 B	control coning	Clear 3	art	Stop	,	
moc	IP configu	ration	dress	192.168	3.10.128	
CH No.	throughout	throughout	doad	time	-ROI No	neak

実行後、設定画面「IP configuration」が表示されます。

IP address	192 🔷 . 16	8 🔷 10	128	1	92.168.10.	128
subn <mark>et</mark> mask	255 🔄 25	5 [255	· 🔄 . 🛛	2	55.255.255	i.0
gateway	192 🔯 16	8 🔯 . 10	 ∲]. 1	1	92.168.10.	1

(2) 画面「IP configuration」にて、DSP に設定する値を入力します。画面右側には変更前の値が表示されます。下記の例では「IP address」だけ「192.168.10.130」と変更しています。

P address	192 🔄 , 168 🔄 , 10	130 🔄	192.168.10.128
subn <mark>et</mark> mask	255 🔄 255 🔄 255	5 🔄 🛛 🔯	255.255.255.0
gateway	192 🔿 168 🔿 10	� <u>1</u> �	192.168.10.1

(3)変更後、「apply」ボタンをクリックします。

実行後以下の確認ダイアログが表示されます。

設定を変更する場合は「OK」ボタンをクリックします。キャンセルする場合は「cancel」をクリックします。 「OK」ボタンをクリックして正常に変更された場合、以下のダイアログが表示されます。

3	×
Successful IP co Please shutdow	nfiguration apply. n device.
	Ж

このダイアログが表示されましたら、DSPの電源を一旦切り、再び電源を入れ直してください。

電源を入れ直した後、「OK」ボタンをクリックします。「OK」ボタンをクリックすると、設定画面に戻ります。

(4) 設定画面右側の設定値表示が変更した値に更新されます。設定が正しければ「close」ボタンをクリックして、この 画面を閉じます。

IP address	192 🔷 .	168 🔄	10 🔄	, 130	192.16	8.10.130
subnet mask	255 🔄	255 🔄	255 🔯	. 0	255.25	5.255.0
gateway	192 🔷	168 🔯	10 🔶	1	192,16	8.10.1

(5) メイン画面「IP address」が更新されていることを確認します。

MCA :	3.1.0				
File Ed	lit Config	Clear St	art Stop)	
module	MCA1	IP add	ress 192.16	8.10.130	
CH No.	throughput count	throughput rate(cps)	dead time ratio(%)	ROI No.	peak (ch)
CH1 :	0.000	0.000	0.0	ROI1 :	0

(6) コマンドプロンプトにて PING コマンドが正常に実行できることを確認します。

コマンド例:

C:¥>ping 192.168.10.130

9.2. CPU ボードでの設定方法

CPU ボードの IP アドレス、サブネットマスク、デフォルトゲートウェイの設定は変更可能です。ネットワーク情報は以下の CPU ボード APG8101 に確保されています。以下に APG8101 を使用したネットワーク情報の設定方法を記載します。

図 22 CPUボード APG8101

・CPU ボード APG8101 上の、SEL スイッチ、INC スイッチ、RES スイッチ、7 セグメント LED の位置を確認します。 ※VME シャーシにて設定作業を行う場合は、怪我をしないように作業スペースを十分確保してください。

・MCA の電源を入れます。

・SEL スイッチを押したままの状態で RES スイッチを一瞬おします。

・1 秒ほど待った後、SEL スイッチを離します。
 離した後、7 セグメント LED のドット部分が点滅していることを確認します。

7 セグメント LED のドット部分が点滅は、24 回ある設定の先頭を表しています。

点滅していない場合は RES スイッチを押し、(3)からやり直してください。

・IP アドレスを設定します。

設定は16進数表記で設定します。デフォルトの192.168.10.128の場合、「COA80A80」の8文字を設定します。 7セグメントLEDを見ながらまず「C」になるまでINCスイッチを連続しておします。「C」になったら次の「0」の設定に 移るためSELスイッチを1回押します。

次の値が表示されドットが点灯していることを確認します。

ドットの点灯は設定8ビット中下位4ビットの設定中であることを表現しています。

セグメント LED を見ながら「0」になるまで INC スイッチを連続しておします。

- 同じようにして残り6文字も設定します。
- ・サブネットマスクを設定します。

IP アドレスの8文字設定後サブネットマスクの設定に移ります。

設定は16進数表記で設定します。デフォルトの255.255.255.0の場合、「FFFFFF00」の8文字を設定します。 設定方法はIPアドレスの時と同じです。

- ・デフォルトゲートウェイを設定します。
- サブネットマスクの8文字設定後デフォルトゲートウェイの設定に移ります。

設定は16進数表記で設定します。デフォルトの192.168.10.1の場合、「C0A80A01」の8文字を設定します。 設定方法はIPアドレスの時と同じです。

設定を完了すると、先頭の IP アドレスの設定に戻り、7 セグメント LED には「C」と表示されのドット部分が点滅します。

・設定内容を確認します。

SEL スイッチを24回連続的に押しながら設定した内容を確認し、先頭まで戻れることを確認します。 ・RES スイッチを押します。

図 23 ネットワーク情報設定順序

10. トラブルシューティング

(7)「connection error」エラーが発生する、通信が不安定

メニュー「config」にてエラーがする場合は、ネットワークが正しく接続されていない可能性があります。 以下を確認します。

- 記動前の構成ファイル config.iniの「IP」が「192.168.10.128」と設定されており、[System]セクションの各ポート 番号が定義されており、MCAを起動して「IP Address」の表示が同じあることを確認します。
- ② PCのネットワーク情報がMCAと接続できる設定かどうか確認します。MCAのデフォルト値は以下の通りです。

IP アドレス192.168.10.128サブネットマスク255.255.255.0デフォルトゲートウェイ192.168.10.1

- ③ イーサネットケーブルが接続されている状態で電源を ON にします。HUB を使用せず PC と MCA を直接接続する際はクロスケーブルを使用します。PC によりストレートケーブルでも動作する場合があります。
- ④ コマンドプロンプトにて ping コマンドを実行し MCA と PC が接続できるか確認します。
- ⑤ MCAの電源を入れ直し、再度 ping コマンドを実行します。
- ⑥ ウィルス検出ソフトやファイヤーフォールソフトを OFF にします。
- ⑦ PCの省電力機能を「常に ON」にします。
- ⑧ ノートPC などの場合、無線 LAN 機能を無効にします。
- ⑨ ハブはスイッチングハブを使用してください。

(8) スペクトルが表示されない

「Start」を実行してもグラフに何も表示されない場合、以下の点を確認します。

- ① 「CH1」にリニアアンプ出力信号を接続します。
- ② 「config」タブ内「ON」にて「CH1」を ON に設定します。
- ③ 「throghput rate(cps)」がカウントしているか確認します。
- ④ 入力信号レベルが大きい過ぎる場合 ADC が飽和します。まずはリニアアンプのコースゲインやファインゲイン を低めに設定し、まずスペクトルが表示されるか否かを確認します、
- ⑤ 「threshold」の値が小さすぎたり大きすぎたりせず、「total count rate(cps)」のカウントを見ながら、30から10くらいまで設定を下げながら変更していき、カウントするように調整します。
- ⑥ グラフの X 軸と Y 軸を右クリックしてオートスケールにします。

11. 保証規定

「弊社製品」の保証条件は次のとおりです。

- 保証期間 ご購入1年間といたします。
- ・ 保証内容 保証期間内で本取扱説明書にしたがって正しい使用をしていたにもかかわらず、故障した場合、 修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
- (1) 使用上の誤り、又は不当な修理や改造、分解による故障・損傷。
- (2) 落下等による故障・損傷。
- (3) 過酷な環境(高温・多湿又は零下・結露など)での故障・損傷。
- (4) 上記のほか「弊社製品」以外の原因。
- (5) 消耗品。
- (6) 火災・地震・水害・落雷などの天災地変、盗難による故障。
- (7) 水濡れと判断された場合。

弊社製品をご使用の際には上記の全項目について同意されたものとします。

【お問い合わせ先】 株式会社テクノエービー 住所 : 〒312-0012 茨城県ひたちなか市馬渡 2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail : order@techno-ap.com お問い合せ受付時間 : 電話:平日9:30~17:00

【代理店】

保証書

この製品保証書は、保証期間内に保証条件の範囲内で 製品の無償保証を行うことをお約束するものです。

品名	:	マルチチャネルアナライザー
型式	:	APU8208
S/N	:	
保証期間	:	ご購入日より1年間
ご購入日	:	
販売店	:	
お客様お名前	:	
お客様ご住所	:	

お客様電話番号 :

- ※ 製品保証書とともに購入日が証明できるものを保管してください。保証や修理の際に必要となります。
- ※ この製品保証書は再発行いたしません、大切に保管してください。
- ※ 保証期間中でも、有料になることがあります。「免責事項」をよくお読みの上、内容を必ずお守りください。