APU8516-8

取扱説明書

第1.0版 2018年1月

株式会社 テクノエーピー	
〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013	
URL : http://www.techno-ap.com e-mail : order@techno-ap.com	/

一目 次一

1.		安全上の注意・免責事項3
2.		概要4
2.	1.	概要
2.	2.	仕様5
2.	З.	改定履歴
3.		外観6
З.	1.	外観6
4.		セットアップ7
4.	1.	アプリケーションのインストール7
4.	2.	接続7
4.	З.	ネットワークのセットアップ8
5.		アプリケーション画面
5.	1.	起動画面9
5.	2.	config タブ11
5.	З.	file タブ
5.	4.	wave タブ18
5.	5.	spectrum タブ
5.	6.	timespectrum タブ22
5.	7.	status タブ
6.		計測
6.	1.	エネルギースペクトル計測
6.	2.	リスト計測
6.	З.	時間スペクトル計測
7.		ファイル
7.	1.	ヒストグラムデータファイル
7.	2.	リストデータファイル
8.		終了

1. 安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下「弊社」)の製品をご購入いただき誠にありがとうございます。 本装置をご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、 正しくご使用ください。

弊社装置のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「弊社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア)「弊社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「弊社」または「弊社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

2. 概要

2.1. 概要

APU8516-8 は高速・高分解能 ADC (500MHz, 8bit) を CH 毎に採用した波形解析ボードです。 FPGA による 500MHz リアルタイムの解析に加え、信号処理によるデッドタイムの無い高速処理を高 時間分解能・高スループットで実現しています。全ての ADC は 500MHz クロックにて同期動作をして おり、複数の高速なシンチレーション検出器からの信号解析などにもご利用いただけます。また、複数ボ ード間の同期処理にも対応しており、CH 数は16CH あり、多 CH 系の解析にも拡張が容易です。

本書は、本装置を計測制御するためのソフトウェアについて説明するものです。

※文章中の、"リスト"と"イベント"は同意義です。 ※文章中の、"ヒスト"と"スペクトル"は同意義です。 ※文章中に「」や「」がある場合は、「APU8516-8」に置き換えてお読みください。

2.2. 仕様

- (1) アナログ入力
 - ・チャネル数 : 16CH
 ・入力レンジ : ±1V
 ・入力インピーダンス : 50Ω
- (2) ADC

・サンプリング周波数	:	500MHz
• 分解能	:	8bit
• SNR	:	49.3dBFS@500MHz

(3) 性能

・QDC スループット	:	1 Mcps 以上
•時間分解能	:	Coarse : 2ns Fine : 31.2ps (LSB)

(4) MCA

・計測モード	:	波形モード、ヒストグラムモード、リストモード
・イベント転送レート	:	約1.2MByte/秒。
		1 イベント 10Byte(80Bit)の場合、16CH 合計で 75kcps

- (5) インターフェース
 ・LAN
 : Ethernet TCP/IP 1000Base-T (List データ取得時)、
 UDP (config データ送受信、status データ受信時)
- (6) 形状
 - •スタンドアローン型 : APU8516-8(16CH)
- (7) 消費電流
 - +5V : 3.8A (最大)
 - +12V : 0.8A (最大)
 - -12V : 0.1A (最大)
- (8) アプリケーション
 - ・OS : Windows 7 以降、32bit 及び 64bit
 - 画面解像度 : HD (1366×768) 以上推奨

2.3. 改定履歴

2018年1月 第1.0版 初版

3. 外観

3.1. 外観

写真 1 APU8516-8

- (1) LED P:電源ON、V:未使用。 E:未使用。
- (2) CH1~CH16 信号入力用 LEMO コネクタ。
- 入力レンジ:±1V、入力インピーダンス:50Ω。
- (3) RESET 通信ボードリセットスイッチ。
- (4) CLK-I 外部クロック信号入力用LEMOコネクタ。外部クロックを使用し動作 させることができます。使用時は基板上「JP17」を「1-6CPU」に変 更後、25MHzのTTL 信号を入力してから電源を投入します。
- (5) CLK-O 外部クロック信号出力用 LEMO コネクタ。25MHz の TTL 信号を出力 します。
- (6) GATE 外部ゲート信号入力用 LEMO コネクタ。TTL 信号を入力します。入 力が "High"の間データの取得を有効にします。
- (7) VETO 外部ベト信号入力用 LEMO コネクタ。 "High" の間データの取得を 無効にします。
- (8) CLR 外部クリア信号入力用 LEMO コネクタ。TTL 信号を入力します。 "High"の立ち上がりエッジでカウンタデータをクリアします。
- (9) AUX オプション出力用 LEMO コネクタ。
- (10) LAN イーサネットケーブル用 RJ45 コネクタ。1000Base-T。

4. セットアップ

4.1. アプリケーションのインストール

APU8516-8 用アプリケーション(以下本アプリ)は Windows 上で動作します。ご使用の際は、計測 に使用する PC に本アプリの EXE(実行形式)ファイルと National Instruments 社の LabVIEW ラン タイムエンジンをインストールする必要があります。

本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラには、EXE(実行形式)ファイルと LabVIEW のランタイムエンジンが含まれており、同時にインストールができます。

インストール手順は以下の通りです。

- (1) 管理者権限でWindows ヘログインします。
- (2) 付属 CD-ROM 内「Installer」フォルダ内の「Setup.exe」を実行します。対話形式でインスト ールを進めます。デフォルトのインストール先は、"Ci¥TechnoAP"です。
- (3) 「スタートボタン」-「TechnoAP」-「APU8516」を実行します。

アンインストールは、「プログラムの追加と削除」から「APU8516」を選択して削除します。

4.2. 接続

(1) 本装置とPC をイーサネットケーブルで接続します。PC によってはクロスケーブルをご使用ください。ハブを使用する場合はスイッチングハブをご使用ください。

4.3. ネットワークのセットアップ

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。
 IPアドレス : 192.168.10.2 ※192.168.10.128 を除く任意の値
 サブネットマスク : 255.255.255.0
 デフォルトゲートウェイ : 192.168.10.1
- (2) 本装置の電源をONにします。電源投入後10秒間はなにも操作しないでください。

(3) PC と本装置の通信接続を確認します。Windows のコマンドプロンプトにて ping コマンドを 実行し、本装置と PC が接続できるか確認します。本装置の IP アドレスは基板上にあります。 工場出荷時の本装置のネットワーク情報は以下の通りです。

IP アドレス	:	192.168.10.128
サブネットマスク	:	255.255.255.0
デフォルトゲートウェイ	:	192.168.10.1

> ping 192.168.10.128

CIN C:¥WINDOWS¥system32¥cmd.exe	-	\times
Microsoft Windows [Version 10.0.14393] (c) 2016 Microsoft Corporation. All rights reserved.		
C:¥Users¥Administrator>ping 192.168.10.128		
192.168.10.128 に ping を送信しています 32 バイトのデータ 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128	:	
192.168.10.128 の ping 統計: パケット数: 送信 = 4、受信 = 4、損失 = 0(0% の損失)、 ラウンド トリップの概算時間 (ミリ秒): 最小 = Oms、最大 = Oms、平均 = Oms		
C:¥Users¥Administrator>		

図 2 通信接続確認 ping コマンド実行

(4) PC にて本アプリを起動してください。

※本アプリを起動した時に、装置との接続に失敗した内容のエラーメッセージが表示される場合

があります。主な原因は以下の通りです。

- 構成ファイル「config.ini」内「System」セクションのポート定義が不適切な値である。特に「DevConfigPort = 4660」、「DevDataPort = 24」、「SubnetMask = ^{255.255.255.0}″」、「Gateway = ^{192.168.10.1}″」、「ChNumber = 16」は重要です。
- ・ PC 側の LAN ケーブルの差し込みが不足している。
- ・ 本装置側のLAN ケーブルの差し込みが不足している。
- ・ 本装置の電源がOFF のまま、もしくは、LAN ケーブルの断線。
- ・ PC 側のネットワーク設定が DHCP になっている。
- PC側のネットワーク設定がプライベートアドレス(192.168.10.128を除く 192.168.10.2から255)で設定されていない。
- ・ PCの省電力モードが機能している。
- ・ PCの無線LANが有効になっている。

上記の原因でも正しく起動されない場合は以下の方法をお試しください。

・ ケーブルの接続などの確認後、本アプリの再起動をする。

5. アプリケーション画面

5.1. 起動画面

「スタートボタン」-「TechnoAP」-「APU8516」を実行すると、以下の起動画面が表示されます。

confg fit vave spectrum tatus dut duto vace	File E	dit Calibratio	on Cont	ng Start :	Stop												
CH modeling besider besider (igg) CFD (igg) CFD (indice) CFD (igg) CFD (igg) CFD (igg	config	file wave	spectrum	timespectrum	status adjust	debug	mode	wave me	eas. time 01	:00:10	real time (0:00:00	file size	(Byte) 0.000	ас	.q. save	error
CH16 nong w 129 w 4 CFD w x0.21 w 10ns w 2 w sum w 0ns w 104 1/1 w 6 8000 64 mode mesurement time(sec) energy spectrum ON/OFF 01:00:10 Image: bine spectrum ON/OFF 100 <t< th=""><th>CH enable CH1 CH2 CH3 CH4 CH5 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH7 CH6 CH6 CH10 CH11 CH11 CH11 CH11 CH11 CH11 CH11</th><th>signal type nomal sig v nomal sig v</th><th>polarity neg v neg v</th><th>baseline restorer thresho filter(us) thresho (digit) 129u 3 3 129u 4 4 129u 4 4</th><th>Ald bining CFD type CFD CFD x0.21 CFD x0.21</th><th>CFD (digit) 10ns v 10ns v</th><th>CFD walk (digit) 1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2</th><th>QDC sum/peak sum/peak</th><th>QDC pretrigger (ns) Ons v Ons v</th><th>QDC filter 20ns 20ns</th><th>QDC integral range(ns) 104 Image (ns) 104 Image (ns)</th><th>QDC full scale (multiple) 1/1</th><th>QDC LLD (digit) 6</th><th>QDC ULD (digit) 5000 응용 5000 응용</th><th></th><th></th><th></th></t<>	CH enable CH1 CH2 CH3 CH4 CH5 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH7 CH6 CH6 CH10 CH11 CH11 CH11 CH11 CH11 CH11 CH11	signal type nomal sig v nomal sig v	polarity neg v neg v	baseline restorer thresho filter(us) thresho (digit) 129u 3 3 129u 4 4 129u 4 4	Ald bining CFD type CFD CFD x0.21 CFD x0.21	CFD (digit) 10ns v 10ns v	CFD walk (digit) 1 4 2	QDC sum/peak sum/peak	QDC pretrigger (ns) Ons v Ons v	QDC filter 20ns 20ns	QDC integral range(ns) 104 Image (ns) 104 Image (ns)	QDC full scale (multiple) 1/1	QDC LLD (digit) 6	QDC ULD (digit) 5000 응용 5000 응용			
mode measurement tene(sec) energy spectrum ON/OFF vave v (01:00:10 +) Ist read byte(byte) time spectrum ON/OFF 10000 +	CH16	nomal sig 👻	neg 👻	129µ 🗨 4 💠	CFD 💌 x0.21	🗙 10ns 🖕	2	sum 🖵	Ons 💌	20ns 👻	104 🔶	1/1 👻	6 🔶	8000 🔄			
		mode wave [•	measurement time(sec) 01:00:10 list read byte(byte) 100000	energy spec	trum ON/OFF m ON/OFF											

各項目の内容は下記の通りです。

メニュー

「File」、「Edit」、「Calibration」	、「Config」、「Start」、「Stop」から構成されます。
「File」 - 「open config」 :	設定ファイルの読み込み
「File」 - 「open histogram」 :	ヒストグラムデータファイルの読み込み
「File」 - 「save config」 :	現在の設定をファイルに保存
「File」 - 「save histogram」 :	現在のヒストグラムデータをファイルに保存
「File」 - 「save image」 :	本アプリ画面を PNG 形式画像で保存
「File」 - 「quit」 :	終了
「Edit」 - 「copy setting of CH1」 :	「CH」タブ内CH1の設定を他の全CHの設定に反映
「Edit」 - 「IP configuration」 :	表示 device のIP アドレスを変更
[calibration] :	calibration を実行します。wave 波形に乱れがある場合実行
	します
「Config」 :	本装置へ全設定を送信
「Start」 :	本装置へ計測開始を送信
「Stop」 :	本装置へ計測停止を送信

・タブ

[config_]		: 本装置設定及び計測に関する設定
ſfile_l		: 波形、リストデータの保存の設定
「wave」		: 入力波形、CFD 波形、QDC 波形の表示
[spectrum]		: ヒストグラム表示
[timespectrum]		: リストデータの時間情報からのCH1 とCH2の時間差スペク
		トルを表示
「status」		: 本装置計測に関する波形観測状態(ステータス)を表示
• acq. LED	:	計測中に点滅
• save LED	:	リストデータ保存中に点滅
• error LED	:	エラー発生時点灯
• mode	:	モード。「hist」、「wave」、「list」を表示。オプションの構成によっ
		て、前述のモードがない場合がありますのでご了承ください。
• meas. time	:	設定した計測時間
• real time	:	有効先頭 CH のリアルタイム(実計測時間)。計測終了時
		measurement time と等しくなります
• file size(Byte)	:	イベントデータの保存中にファイルの容量(Byte)を表示します

5. 2. config タブ

config	file wave	spectrum time	spectrum	status			mode	ist "	eas, time	12	:00:00	real time (00:00:00	file size	(Byte) 0.000 acq. save e	rror
CH enable	signal type	baselin restore polarity filter(µ:	threshok (digit)	d _{timing} type	CFD function (multiple)	CFD delay (digit)	CFD walk (digit)	QDC sum/peak	QDC pretrigg (ns)	ger	QDC filter (ns)	QDC integral range(ns)	QDC full scale (multiple)	QDC LLD (digit)	QDC ULD (digit)	
CH1	nomal sig 🖕	pos 🚽 129µ	4 🗢	CFD 🖵	×0.21 👻	10ns 🕌	2 🔶	sum 🖕	Ons ,	•	20ns 👻	104 🔷	1/1 💌	6 🔷	8000 🔄	
CH2	nomal sig 🖉	pos 🚽 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 🕌	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔶	1/1 💌	6 🔶	8000	
CH3	nomal sig 💂	pos 🚽 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔶	1/1 🕌	6 🔶	8000	
CH4	nomal sig 💂	pos 🗶 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔶	1/1 💌	6 🔶	8000	
CH5	nomal sig 💂	pos 🗶 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔷	1/1 🖉	6 🔶	8000	
CH6	nomal sig 💌	pos 👞 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔷	1/1 🖉	6 🔶	8000	
CH7	nomal sig 🜉	pos 🔪 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔷	1/1 🖉	6 🔶	8000	
CH8	nomal sig 😱	pos 🔪 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖕	104 🔷	1/1 🖉	6 🔶	8000	
CH9	nomal sig 🖕	pos 🔪 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 🗣	Ons ,	•	20ns 👻	104 🔷	1/1 💌	6 🔶	8000 🔄	
CH10	nomal sig 😱	pos 🔪 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 👻	104 🔶	1/1 👻	6 🔶	8000	
CH11	nomal sig 💂	pos 🗶 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 👻	104 🔶	1/1 👻	6 🔶	8000	
CH12	nomal sig 💌	pos 🗶 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖵	104 🔶	1/1 🖵	6 🔶	8000	
CH13	nomal sig 💌	pos 🗨 129µ	- 4 🔶	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖵	104 🔶	1/1 🗨	6 🔶	8000	
CH14	nomal sig 💌	pos 💌 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 👻	Ons ,	•	20ns 🖵	104 🔷	1/1 🗨	6 🔶	8000	
CH15	nomal sig 💌	pos 💌 129µ	- 4 🔷	CFD 👻	×0.21 👻	10ns 👻	2 🔶	sum 🗣	Ons ,	•	20ns 🖵	104 🔷	1/1 🖉	6 🔷	8000	
CH16	nomal sig 💌	pos 💌 129µ	4 🔷	CFD 🖵	×0.21 👻	10ns 👻	2 🔷	sum 🖕	Ons ,	•	20ns 🖵	104 🔷	1/1 🖉	6 🔷	8000	
	mode list	measu time(s 12:00: list rea 10000	ement c) 00 ∳ i byte(byte) 0 ∲	ene tim	rgy spectrum e spectrum Ol	ON/OFF										

図 4 config タブ

本装置のパラメータに関わる設定です。

• CH enable : CH 使用可否。通常は全 CH を enable (押した) 状態にしてください。

signal type
 : 入力波形のタイプを選択します。NIM 信号や Timing 信号入力時は「fast sig」
 に設定してください。その他は「nomal sig」を設定してください。

- polarity
 : 入力信号の極性を、正極性の場合は「pos」、負極性の場合は「neg」から選択します。
- baseline restorer filter : ベースラインレストアラーの時定数を設定します。Ext(AutoBLR なし)、
 Fast、4μs、85μs、129μs、260μsから設定します。通常は85μsに
 設定します。
- threshold
 : 入力信号の波形取得の閾値を設定します。単位は digit です。設定範囲は 0 から 127 です。wave モードで「raw」の波形を見ながら、ノイズレベルより大き い値で設定します。

	\bigwedge		Set above noise				
threshold		-	unter				
TDC, QDC calc enable -	rise edge	_					

: タイムスタンプする際の波形を、CFD波形、LED(生波形)から選択します。 • timing type 「LET」: リーディングエッジ (Leading Edge Timing) あるトリガーレベルtに到達したタイミングです。トリガー取得タイミングはa' とり'のように波高が変われば時間も異なります。

図 5 リーディングエッジ (Leading Edge Timing)の考え方

図 6 コンスタントフラクションタイミング (Constant Fraction Disicriminator Timing)の考え方

上図の異なる波形aとりに対し、以下の波形c,dとe,fとg,hのような波形を生成します。

- 波形 c, d
 : 波形 a と b を CFD function 倍し、反転した波形
 波形 e, f
 : 波形 a と b を CFD delay 分遅延した波形
- 波形gh : 波形cとeを加えた波形とdとfを加えた波形

波形gとhのゼロクロスタイミングであるCFDは、波形の立ち上がり時間が同じであれば、 波高が変化しても一定である、という特徴があります。 CFD function
 CFD 波形整形用に元波形を縮小するための倍率。0.03 倍、0.06 倍、0.09 倍、0.12 倍、0.15 倍、0.18 倍、0.21 倍、0.25 倍、0.28 倍、0.31 倍、0.34
 倍、0.37 倍、0.40 倍、0.43 倍、0.46 倍 から設定します。

•CFD delay : CFD 遅延時間を設定します。APU8516-8 は 2ns から 28ns で設定します。

・CFD walk : タイムスタンプする閾値を設定します。単位は digit です。wave モードで 「CFD」の波形を見ながら、0 クロス位置より近辺の値で設定します。

•QDC sum/peak : QDC データの出力形式を選択します。PEAK 値、SUM 値 から選択します。

• QDC pre trigger : 積分値算出用に波形整形を開始するタイミングを、Ons、-8ns、-16ns、

-24ns、-32nsから選択します。

• QDC filter

: 積分値算出用の波形を整形するための時定数を設定します。 設定は Ext、10ns、 20ns、50ns、100ns、200ns から選択します。

• QDC integral range : QDC の積分時間を選択します。範囲は Ons から 32000ns です。

 QDC full scale : QDC データのゲインを設定します。設定は 1/1、1/2、1/4、1/8、1/16、 1/32、1/64、1/128、1/256、1/512から選択し、QDC 値が8191 以 下になるようにします。

- QDC LLD

 QDC の LLD(Lower Level Discriminator)を設定します。単位は digit です。
 この閾値より下の積分値はタイムスタンプデータ、積分値データを取得しません。
 ULD より小さい値に設定します。設定範囲は0から8191です。

 QDC 0 ULD (Upper Level Discriminator)を設定します。単位は digit です。
 - COLD . GDC のOLD Opper Lever Discriminator を設定します。単位は digit C9。 この閾値より上の積分値はタイムスタンプデータ、積分値データを取得しません。LLD より大きい値に設定します。設定範囲は 0 から 8191 です。

device
 計測対象とする装置を選択します

• mode : hist、list、wave、list-pileup、list-wave、list_com からモードを選択します。

- hist : 入力信号を積分しスペクトルを表示します。
- wave : 入力信号をデジタイズし波形を表示します。
- list : 入力信号について、時間情報、CH情報、積分情報を1イ ベントとし、バイナリファイルとして出力、保存すること ができます。時間スペクトルや PSD2 次元ヒストグラム を取得する際にも使用します。
- ・mesurement time : 計測時間を指定します。 最大 8760 時間です。
- list read byte : 単位読出し数を設定します。10,000Byteの固定となります。
- time spectrum on/off : list モードでリストデータ取得中の time spectrum 表示の有無を選択します。
 リストデータのみを取得したい場合はチェックを外します。
 高計数の時 ON に すると、リストデータの取得が遅くなるので注意ください。
- energy spectrum on/off : list モードでリストデータ取得中の spectrum 表示の有無を選択します。リスト データのみを取得したい場合はチェックを外します。高計数の時 ON にすると、 リストデータの取得が遅くなるので注意ください。

5.3. file タブ

config file wave spectrum timespectrum	status mode list	meas. time 12:00:00	real time 00:00:00	file size(Byte) 0,000	acq. save error
file					
histogram save	list save				
histogram continuous save	list file path				
	D:#product#APV8516_b024#evaluation# data#longrun_pg_				
histogram file path					
C:¥Data¥spectrum	Ist file number file name 1 Image: second seco				
histogram file save time(sec)	format				
60	binary 💌				

図7 file タブ

保存に関する設定です。

• histogram save	:	計測終了時に「spectrum タブ」に表示されているヒストグラムデータをファ
		イルに保存します。ファイルの保存先は後述のフォーマットになります。
		「mode」で「hist」を選択時のみ有効です。
• histogram continuous save	:	ヒストグラムデータを設定時間間隔で連続してファイルに保存するか否かを設
		定します。「mode」で「hist」を選択時のみ有効です。
• histogram file path	:	ヒストグラムデータファイルの絶対パスを設定。拡張子無しも可です。
		※注意※このファイル名で保存されるのではなく、このファイル名をもとにして以
		下のフォーマットになります。
		例:「histogram file path」に「C:¥Data¥histogram.csv」、「histogram
		file save time(sec)」に「10」と設定し、日時が2010/09/01 12:00:00
		の場合は、「C:¥Data¥histogram_20100901_120000.csv」というファイ
		ル 名 で デ ー 夕 保 存 を 開 始 し ま す 。 10 秒 後 に 「 C :
		¥Data¥histogram_20100901_120010.csv」というファイルで保存します。
		※上記「120010」が「120009」または「120011」になる場合もあります。
• hisutogram file save time(sec)	:	ヒストグラムデータの連続保存の時間間隔を設定します。単位は秒です。設定
		範囲は5秒から3600秒です。
• list save	:	リストデータをファイルに保存するか否かを設定します。Config タブ内
		「mode」にて「list」を選択時のみ有効です。
• list file number	:	リストデータファイルに付加される番号の開始番号を設定します。 0 から
		999999 まで。 999999 を超えた場合 0 にリセットされます。
• format	:	リストデータのフォーマットを「binary」と「text」から選択できます。

5. 4. wave タブ

図 8 wave タブ

波形表示に関する設定です。

グラフ	:	波形グラフ。「config」タブ内「mode」にて「wave」を選択した場合、波
		形を表示します。
• on/off	:	波形表示の可否を指定します。
• CH	:	表示させる波形のCH を選択します。
• Type	:	表示させる波形の種類を選択します。
		「raw」 : ADC でデジタイズされ、BLR 処理された波形
		「CFD」: CFD 波形整形された波形
		「Filter」:QDCで積分される波形
• trigger edge	:	トリガーの極性を選択します。 通常は pos を選択してください。
• threshold	:	トリガーの閾値を設定します。※グラフ中のカーソルでも設定できます。
• trigger point	:	波形の表示開始ポイントを指定します。※グラフ中のカーソルでも設定できま
		す。
• trigger SIG	:	トリガーとなるSIG(Signal)を選択します。通常はSIG1を選択してください。
• wave compress	:	X 軸の時間スケール圧縮度を設定します。 立ち下がり時間の長い波形を表示す
		る場合に使用します。
• wave free run	:	チェックを外すとトリガーされた波形が表示され、チェックするとトリガーフ
		リーの波形が表示されます。ベースラインレベルやノイズレベルを見ることに
		も使用できます。
 accumlation 	:	波形データ重ね合わせの有効・無効を選択します。
• XY Scale	:	X 軸 Y 軸のスケールをボタンで調整できます。拡大は+(プラス)、縮小は-
		(マイナス)です。
• X axis calibration	:	X軸の単位を選択します。
• Y axis calibration	:	Y軸の単位を選択します。 ※mV 表示は参考としてお使いください。

- X 軸上で右クリックして「自動スケール」をチェックすると自動スケールにな ります。チェックを外すと自動スケールでなくなり、X 軸の最小値と最大値が 固定になります。最小値または最大値を変更する場合は、マウスのポインタを 変更する数値の上に置き、クリックまたはダブルクリックすることで変更でき ます。
- ・Y 軸範囲
 : Y 軸上で右クリックして「自動スケール」をチェックすると自動スケールにな ります。チェックを外すと自動スケールでなくなり、Y 軸の最小値と最大値が 固定になります。最小値または最大値を変更する場合は、マウスのポインタを 変更する数値の上に置き、クリックまたはダブルクリックすることで変更でき ます。
 - : カーソル移動ツールです。ROI設定の際カーソルをグラフ上で移動可能です。
 - : ズーム。クリックすると以下の 6 種類のズームイン及びズームアウトを選択し 実行できます。

図1 グラフ ズームイン及びズームアウトツール

	(1)四角形	:	ズームこのオプションを使用して、ズーム領域のコ
			ーナーとするディスプレイ上の点をクリックし、四
			角形がズーム領域を占めるまでツールをドラッグし
			ます。
	(2)X-ズーム	:	X軸に沿ってグラフの領域にズームインします。
	(3) Y-ズーム	:	Y 軸に沿ってグラフの領域にズームインします。
	(4)フィットズーム	:	全ての X および Y スケールをグラフ上で自動スケ
			ールします。
	(5)ポイントを中心にズームアウト	:	ズームアウトする中心点をクリックします。
	(6)ポイントを中心にズームイン	:	ズームインする中心点をクリックします。
:	パンツール。プロット	をつけ	かんでグラフ上を移動可能です。

<m state

-

•,⊕

株式会社テクノエーピー

5. 5. spectrum タブ

図 9 spectrum タブ

spectrum 表示に関する設定です。

- グラフ : エネルギースペクトル。「config」タブ内「mode」にて「hist」を選択した 場合または「mode」で「list」を選択し且つ「spectrum ON/OFF」のチェ ックが有効の場合にスペクトルを表示します。
- チェックBOX : グラフにCH毎のヒストグラムを表示するか否かの設定をします。
- ROI CH : ROI (Region Of Interest)を摘要する CH 番号を選択します。1 つの CH 信 号に対し、最大 8 つの ROI を設定可です。
- ROI start (ch) : ROI の開始位置を設定します。単位は ch です
- ROI end (ch) : ROI の終了位置を設定します。単位は ch です
- energy
- ビーク位置(ch)のエネルギー値を定義します。60Coの場合、1173(keV)
 や1332(keV)と設定。「calibration」にて「ch」を選択した場合、ROI 間のピークを検出しそのピーク位置(ch)と設定したエネルギー値から keV/ch を算出し、半値幅の算出結果に摘要します。

calibration

- : X軸の単位を選択します。設定に伴いX軸のラベルも変更されます。
 - ch : ch (チャネル)単位表示。ROI の「FWTM」の「FWHM」な どの単位は任意になります。
 - eV : eV 単位表示。1 つのヒストグラムにおける2 種類のピーク(中 心値)とエネルギー値の2 点校正により、ch が eV になるよう に 1 次関数 y=ax+b の傾き a と切片 b を算出しX 軸に設定しま す。ROI の「FWTM」の「FWHM」などの単位は "eV" にな ります。
 - keV : keV 単位表示。1 つのヒストグラムにおける 2 種類のピーク (中心値)とエネルギー値の 2 点校正により、ch が keV にな るように 1 次関数 y=ax+b の傾き a と切片 b を算出し X 軸に設 定します。ROI の「FWTM」の「FWHM」などの単位は "keV" になります。例:5717.9ch に ⁶⁰Co の 1173.24keV、 6498.7ch に⁶⁰Co の 1332.5keV がある場合、2 点校正より a を 0.20397、b を 6.958297 と自動算出します。
 - manual1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任意に設定しX 軸に設定します。単位は任意に設定します。

5. 6. timespectrum タブ

図 10 timespectrum タブ

timespectrum 表示に関する設定です。ボード内の計測に限ります。 ※list モードにて取得したリストデータをもとに timespectrum を生成します。

間差スペクトルを
至選択します。
選択します。
。1 倍の時、フル
ips)、1/128倍
り1ns)です。
定します。前述の
ベント検出の時間
デンス(同時)と
す。

5. 7. status タブ

config	file wave	spectrum	timespectrum	status			mod	le hist	meas. time	01:00	:10 rea	al time 🕻	0:00:0	06 file si	te(Byte) (0.000	2	acq.	save	е
СН				ROI																
	output count	output rate(cps)			peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM					
CH1 :	305550	50009		ROI1 : 3	1119	638.52	2.399k	305.550k	50.925k 3	305.123k	50.854k	500.0	75.529	500.000	500.000					
CH2 :	0	0		ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH3 :	0	0		ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH4 :	0	0		ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH5 :	0	0		ROIS :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH6 :	0	0		ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH7 :	0	0		ROI7 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH8 :	0	0		ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH9 :	0	0		ROI9	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH10 :	0	0		ROI10	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH11 :	0	0		ROI11	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH12 :	0	0		ROI12	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH13 :	0	0		ROI13	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH14 :	0	0		ROI14	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH15 :	0	0		ROI15	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					
CH16 :	0	0		ROI16	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000					

図11 status タブ

計測時の状態(ステータス)を表示します。

•CH部

CH毎の状況を表示します。

「output count」 : アウトプット総イベント数

- 「output rate(cps)」 : 1 秒間あたりのアウトプットイベント数
- ROI 部

ROI間の算出結果を表示します。

「peak(ch)」	:	最大カウントのch
「centroid(ch)」	:	全カウントの総和から算出される中心値(ch)
[peak(count)]	:	最大カウント
「gross(count)」	:	ROI間のカウントの総和
「gross(cps)」	:	ROI間のカウントのCPS
[net(count)]	:	ROI間のバックグラウンドを差し引いたカウントの総和
「net(cps)」	:	ROI間のバックグラウンドを差し引いたカウントのCPS
[FWHM(ch)]	:	半値幅(ch)
FWHM(%) _	:	半値幅(%)。半値幅÷ROI定義エネルギー×100
ſFWHMJ	:	半値幅
ſFWTMJ	:	1/10幅

6. 計測

例として、LaBr₃(Ce)検出器(以下検出器)を使用した際の、エネルギースペクトル計測、リスト計測、 PSD 計測、時間スペクトル計測の操作手順を記載します。

6.1. エネルギースペクトル計測

(1) 環境

図12 エネルギースペクトル計測環境

- ・ 全ての機器(APU8516-8、HV(高圧電源)、PC)がOFFであることを確認します。
- ・ 検出器とHVをSHV コネクタのケーブルで接続します。
- 検出器からのアノード出力信号をAPU8516-8のCH1にLEMOコネクタ同軸ケーブルで接続します。BNCコネクタの場合は、BNC-LEMO変換アダプタをご使用ください。
- ・ APU8516-8とPCをLANケーブルで接続します。
- ・ APU8516-8 の電源をON にします。
- ・ PCの電源をONにします。本アプリを起動します。
- ・ 高圧電源をONにし、検出器に応じた電圧を印加します。
- ・ この例では¹³⁷Cs線源を使用しています。

(2) 波形計測

まず波形モードにて入力されている検出器からの信号を確認します。 「config」タブにて以下の設定をした後、メニュー「Config」をクリックします。

config	file wave	spectrum	timespectrum	status	adjust	debug		mode	wave	neas, tim	e 01	1:00:10	real tin	ne O	0:00:00	file size	(Byte) 0.000	acq.	save	error
CH enable	signal type	polarity f	baseline restorer thres filter(μs) (digi	hold _{timing} :) type	CFD funct (mult	c ion d iple) (r	CFD lelay digit)	CFD walk (digit)	QDC sum/peak	QD0 pret k (ns)	C rigger	QDC filter (ns)	QDC integral range(r	l ns)	QDC full scale (multiple)	QDC LLD (digit)	QDC ULD (digit)			
CH1	nomal sig 🖕	neg 🚽	129µ 🚽 3	CFD	×0.2	1 🖵 1	Ons 🕌	1 🔷	sum 🖕	Ons		20ns 👻	104	-	1/1 👻	6 🔶	8000 🔷			
CH2	nomal sig 🖕	neg 🚽	129µ 🚽 4	CFD		1 🖵 1	Ons 👻	2 🔶	sum 🖕	, Ons		20ns 🕌	104	-	1/1 👻	6 🔶	8000			
СНЗ	nomal sig 💂	neg 👻	129µ 🚽 4	CFD		1 🖵 1	.0ns 🖵	2 🔶	sum 🕌	, Ons		20ns 👻	104	-	1/1 🗸	6 🔷	8000 🔄			
CH4	nomal sig 👻	neg 👻	129µ 🗨 4	CFD		1 🖵 1	.0ns 🖵	2 🔶	sum 🗸	, Ons		20ns 👻	104	-	1/1 👻	6 🔷	8000			
CH5	nomal sig 💌	neg 👻	129µ 🗨 4	CFD		1 🖵 1	.0ns 🖵	2	sum 🖉	, Ons		20ns 👻	104	-	1/1 👻	6 🔷	8000			
CH6	nomal sig 👻	neg 👻	129µ 🗨 4	CFD		1 🖵 1	0ns 🖵	2 🔶	sum 🗣	, Ons	-	20ns 👻	104	-	1/1 💌	6 🔷	8000			
CH7	nomal sig 💌	neg 🔪	129µ 🗶 4	CFD		I 🖵 1	.0ns 🖵	2 🔷	sum 🖕	, Ons	-	20ns 👻	104	-	1/1 💌	6 🔷	8000			
CH8	nomal sig 🔎	neg 👻	129µ 🗨 4	CFD		1 🖵 1	Ons 👻	2 🔶	sum 🖕	, Ons	-	20ns 👻	104	\$	1/1 👻	6 🔶	8000 🔿			
CH9	nomal sig 🖕	neg 🚽	129µ 😱 4	CFD	▼ x0.2	1 🖵 1	Ons 👻	2 🔶	sum 🕌	, Ons	-	20ns 👻	104	\$	1/1 👻	6 🔶	8000 🔿			
CH10	nomal sig 🖕	neg 🚽	129µ 😱 4	CFD		1 🖵 1	Ons 👻	2 🔶	sum 🕌	, Ons	-	20ns 👻	104	\$	1/1 👻	6 🔶	8000 🔿			
CH11	nomal sig 🖕	neg 👻	129µ 👞 4	CFD		1 🖵 1	Ons 🖵	2 🔷	sum 🖉	, Ons		20ns 👻	104	4	1/1 👻	6 🔶	8000 🐟			
CH12	nomal sig 🖉	neg 👻	129µ 👞 4	CFD		1 🖵 1	Ons 🖵	2 🔷	sum 👻	, Ons		20ns 👻	104	4	1/1 🖵	6 🔶	8000 🐟			
CH13	nomal sig 🖉	neg 👻	129µ 🚽 4	CFD	▼ x0.2	1 🖵 1	.0ns 🖵	2 🔶	sum 🗣	, Ons	-	20ns 👻	104	•	1/1 🖉	6 🔶	8000			
CH14	nomal sig 🖉	neg 👻	129µ 🚽 4	CFD	▼ x0.2	1 🖵 1	0ns 🖵	2 🔶	sum 🖕	, Ons	-	20ns 👻	104	-	1/1 🖉	6 🔶	8000 🔄			
CH15	nomal sig 🖉	neg 👻	129µ 👞 4	CFD		1 🖵 1	Ons 🖵	2 🔷	sum 🖕	, Ons	-	20ns 👻	104	-	1/1 🖉	6 🔷	8000 😂			
CH16	nomal sig 🖉	neg 🖵	129µ 🚽 4	CFD	▼ ×0.2	1 🖵 1	Ons 👻	2 🔶	sum 🖕	, Ons	•	20ns 👻	104	\$	1/1 🖉	6 🔶	8000 🔄			
	mode wave	_	measurement time(sec) 01:00:10 list read byte(byt 100000	∲ e)	energy sp	ectrum OI	N/OFF													

図13 波形計測設定

「wave」タブを開き、下図の設定を確認した後、メニュー「Start」をクリックします。グラフに検出器からの波形が確認できます。

図14 波形計測画面

以下の点を注意します。

 信号が表示されているか?されていない場合、トリガーがかかっていない場合がありますので、まず ベースラインを確認するために、「wave」タブ内「wave free run」にチェックをして、メニュー 「Config」→「Start」を実行してください。ベースラインと大まかにどのくらいの波高の信号がき ているかを確認できます。

図 15 ベースライン確認中

次に「wave free run」にチェックを外し、「threshold」を10くらいから徐々に上げていき、前ページのように波形がしっかり捉えられる、「threshold」値を控えておきます。この控えをこの後の設定にも使用します。

波高が大きすぎてサチレーションしていないかを確認します。波高が大きい場合は、ED加高圧を下げるなどして、本装置への入力信号の振幅を下げてください。

(3) エネルギースペクトル計測

スペクトルの計測を行う場合、「config」タブにて以下の設定をした後、メニュー「Config」をクリック します。波形計測にて控えておいた「threshold」値を、「config」タブ内「threshold」に設定します。

config	file wave	spectru	m timespe	ctrum	status a	djust debu	g	mode	hist 🛛	meas. time 🛛	1:00:10	real time	00:00:0	D file size	(Byte) 0.000	acq.	save	error
Chi enable CH1 CH2 CH3 CH4 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9	file wave signal type nomal sig v nomal sig v	polarity neg v neg v neg v neg v neg v neg v neg v neg v neg v	m timespe restorer filter(µs) 129µ v 129µ v	settrum settrum threshold (digit) 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	timing type CFD V CFD V	debut CFD function (multiple) x0.21 x0.21	49 CFD delay (digit) 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v	mode CFD walk (digit) 1 2	QDC sum/peak sum v sum v sum v sum v sum v sum v sum v sum v sum v	Participation Apple for the second	1:00:10 QDC filter 20ns w 20ns w 20ns w 20ns w 20ns w 20ns w 20ns w 20ns w 20ns w 20ns w	Peal time QDC integral range(ns) 104	QDC full scale full scale full scale i 1/1 w i 1/1 w	0 file size QDC LLD (digit) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(E) 0.000 QDC (digit) 8000 (H) 8000 (H)	acq.	save	error
CH11 CH12 CH13 CH14 CH15 CH16	nomal sig v nomal sig v nomal sig v nomal sig v nomal sig v nomal sig v nomal sig v	neg v neg v neg v neg v	129µ x 129µ x	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CFD V CFD V CFD V CFD V CFD V CFD V	x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v	10ns v 10ns v 10ns v 10ns v 10ns v 0N/OFF	2 (*) 2 (*) 2 (*) 2 (*) 2 (*) 2 (*) 2 (*)	sum v Sum v Sum v Sum v Sum v		20ns v 20ns v 20ns v 20ns v 20ns v 20ns v	104 9 104 9 104 9 104 9 104 9 104 9 104 9	1/1 v 1/1 v 1/1 v 1/1 v 1/1 v 1/1 v	6 4 6 4 6 4 6 4 6 4 6 4 6 4	8000 (ବେ) 8000 (ବେ) 8000 (ବେ) 8000 (ବେ) 8000 (ବେ)			

図16 Config タブ

「spectrum」タブを開き、下図の設定を確認した後、メニュー「Start」をクリックします。実行後以下のスペクトルが表示されます。

図17 エネルギースペクトル計測環境

以下の点を注意します。

- ・「spectrum on/off」のCH1 をチェックし、CH1 のスペクトルを表示できるようにします。
- ・ ピークの解析を行う場合は、ROIを設定します。詳細は「5.5. spectrum タブ」を参照ください。

計測したデータは、メニュー「File」-「save histogram」にて保存できます。

計測を終了する場合は、メニュー「Stop」をクリックします。

6.2. リスト計測

(1) 環境

図18 エネルギースペクトル計測環境

- ・ 全ての機器(APU8516-8、HV(高圧電源)、PC)がOFFであることを確認します。
- ・ 検出器とHVをSHV コネクタのケーブルで接続します。
- 検出器からのアノード出力信号をAPU8516-8のCH1にLEMOコネクタ同軸ケーブルで接続します。
 BNCコネクタの場合は、
 BNC-LEMO変換アダプタをご使用ください。
- ・ APU8516-8とPCをLANケーブルで接続します。
- APU8516-8の電源をONにします。
- ・ PCの電源をONにします。本アプリを起動します。
- ・ 高圧電源をONにし、検出器に応じた電圧を印加します。
- この例では¹³⁷Cs線源を使用しています。
- (2) 入力波形の確認

前述「6.1.エネルギースペクトル計測(2)波形計測」同様の確認をします。

(3) エネルギースペクトルの確認

前述「6.1.エネルギースペクトル計測(3)エネルギースペクトル計測」同様の確認をします。

特に、本ソフトにおける以下の点を注意します。

- 「output rate(cps)」 : 1 秒間に所得するイベント数であり、想定に対して低過ぎたり、高過ぎた りしていないか(次ページ図内①)を確認します。リストモードでは1イ ベント毎に 16Byte のデータを所得するため、例として「output rate(cps)」が 500kcps の場合、1 秒間に 8MB/秒 (500kcps× 16Byte) のデータを保存することになります。
- 「spectrum」タブ : スペクトルの形状に異常はないか、特にノイズデータを過剰に所得してい ないか (次ページ図内2)を確認します。

図 19 list モード計測前注意点

(4) リスト計測

リスト計測を開始します。「config」タブ内「mode」を「list」に設定します。

config	file wave	spectrum	timespectr	um statu	us adjust	debug		mode	list	meas. t	ime (1:00:1	0	real time	00:00	:00	file size	(Byte) 0.000 acq. save erro	r
CH enable	signal type	polarity	baseline restorer th filter(µs) (d	hreshold _{tim} digit) _{typ}	CF ning fun pe (mi	C (ction (ultiple) (CFD delay (digit)	CFD walk (digit)	QDC sum/pea	Q pi k (r	DC retrigge s)	QDC r filter (ns)	C ir)DC ntegral ange(ns)	QDC full sca (multip	le le)	QDC LLD (digit)	QDC ULD (digit)	
CH1	nomal sig 🖉	neg 👻	129µ 🔪 3	3 🔶 CF	FD 🚽 🗙 x0.	21 🗶 :	10ns 🖵	1 🔶	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	-	6 🔶	8000 🔄	
CH2	nomal sig 🖕	neg 👻	129µ 🚽 4	‡ 🔶 CF	FD 🚽 🗙 x0.	21 🖵 🗄	10ns 🕌	2 🔶	sum ,	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000	
CH3	nomal sig 💂	neg 🕌	129µ 🚽 4	1 🔶 CF	FD 🚽 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔷	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000 🔄	
CH4	nomal sig 🖉	neg 👻	129µ 🚽 4	1 🔄 CF	FD 🗶 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔷	sum 💽	r Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000 🔄	
CH5	nomal sig 🖉	neg 👻	129µ 🗨 4	4 🔄 CF	FD 🗶 🗙 x0.	21 🗶 🗄	10ns 🖵	2 🔷	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000	
CH6	nomal sig 🖉	neg 👻	129µ 🗨 4	4 🔄 CF	FD 🗶 🗙 x0.	21 🗶 🗄	10ns 🖵	2 🔶	sum 💽	- Or	IS 👻	20ns	- 1	104 🔶	1/1	-	6 🔶	8000 🔄	
CH7	nomal sig 🖉	neg 👻	129µ 🗨 4	4 🔶 CF	FD 🔪 🗙 x0.	21 🗶 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	-	6 🔶	8000 🔄	
CH8	nomal sig 🖉	neg 👻	129µ 🔪 4	\$ 🔶 CF	FD 🔪 x0.	21 🔪 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 💌	20ns	. 1	104 🔶	1/1	-	6 🔶	8000 🔄	
CH9	nomal sig 🖕	neg 🕌	129µ 😱 4	1 🔶 CF	FD 🚽 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔶	sum 😱	- Or	IS 🔻	20ns	. 1	104 🔶	1/1	•	6 🔷	8000 🔄	
CH10	nomal sig 🖕	neg 🕌	129µ 😱 4	1 🔶 CF	FD 🚽 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔶	sum 😱	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000 🔄	
CH11	nomal sig 💂	neg 🕌	129µ 🚽 4	1 🔶 CF	FD 🚽 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔷	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000 🔄	
CH12	nomal sig 🖉	neg 👻	129µ 🚽 4	1 🔄 CF	FD 🗶 🗙 x0.	21 🗶 🗄	10ns 🕌	2 🔷	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	•	6 🔶	8000 🔄	
CH13	nomal sig 🖉	neg 👻	129µ 🗨 4	\$ 🔄 CF	FD 🗶 🗙 x0.	21 🗶 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 👻	20ns	- 1	104 🔶	1/1	-	6 🔶	8000	
CH14	nomal sig 🖉	neg 👻	129µ 🗨 4	\$ 🔄 CF	FD 🗶 🗙 x0.	21 🗶 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 👻	20ns	- 1	104 🔶	1/1	-	6 🔶	8000	
CH15	nomal sig 🖉	neg 👻	129µ 🗨 4	4 🔶 CF	FD 🔪 🗙 x0.	21 🗶 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 👻	20ns	. 1	104 🔶	1/1	-	6 🔶	8000 🔄	
CH16	nomal sig 🖉	neg 👻	129µ 🔪 4	\$ 🔶 CF	FD 🔪 x0.	21 🗶 :	10ns 🖵	2 🔶	sum 💽	- Or	IS 💌	20ns	. 1	104 🔶	1/1	-	6 🔶	8000 🔄	
	mode list [•	measurement time(sec) 01:00:10 list read byte(100000	(byte)	energy s	pectrum O	N/OFF												

図20 Configタブ

リストデータを保存する場合は、「file」タブ内の以下の各項目を設定します。

Nist save」 : チェック

「list file path」 : 基準となるファイルパス

「list file number」 : 0から999999 までで任意。重複しないように注意してください。

図21 file タブ内リストデータ保存関連設定

メニュー「Config」→「Start」の順にクリックします。実行後、イベントを検知しリストデータを取得 すると以下の「file size(Byte)」が増加します。

config	f	file wave	spectrum	timespectrum	status	adjust	debug	mode	e list	meas, time	24:00	:00 re	al time [L2:04:	00	file size(Byte)	408.503M	acq.	save	error
СН					ROI										L					
		output count	output rate(cps)			peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWH	IM FWTM				
CH1	:	10850105	890		ROI1 :	334	164.35	264.000	23.710k	987.917	17.861k	744.208	260.8	39.400	260.8	26 324.348				
CH2	:	0	0		ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
СНЗ	:	0	0		ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
CH4	:	0	0		ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000	•			
CH5	:	0	0		ROI5 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
CH6	:	0	0		ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000	•			
CH7	:	0	0		RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000	•			
CH8	:	0	0		ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000				
CH9	:	0	0		ROI9	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
CH10	:	0	0		ROI10	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000	•			
CH11	:	0	0		ROI11	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
CH12	:	0	0		ROI12	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000	-			
CH13	:	0	0		ROI13	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000				
CH14	:	0	0		ROI14	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000				
CH15	:	6	0		ROI15	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000)			
CH16	:	0	0		ROI16	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.0	00 0.000				

図 22 list データ計測・保存中画面

計測を終了する場合は、メニュー「Stop」をクリックします。

6.3. 時間スペクトル計測

(1) 環境

図23 時間スペクトル計測環境

- ・ 全ての機器(APU8516-8、HV(高圧電源)、PC)がOFFであることを確認します。
- ・ 検出器とHVをSHV コネクタのケーブルで接続します。
- ・ 検出器からのアノード出力信号を本装置のCH1 とCH2 にLEMO コネクタ同軸ケーブルで接続します。BNC コネクタの場合は、BNC-LEMO 変換アダプタをご使用ください。
- ・ 本装置とPCをLANケーブルで接続します。
- APU8516-8の電源をONにします。
- ・ PCの電源をONにします。本アプリを起動します。
- ・ 高圧電源をONにし、検出器に応じた電圧を印加します。
- ・ この例では²²Na 線源を使用しています。

(2) 波形計測

前述「6.1.エネルギースペクトル計測(2)波形計測」同様の確認をします。

(3) エネルギースペクトル計測 検出器の状態を確認しつつ、時間計測対象エネルギーの範囲指定を行います。 まず、以下の設定にてエネルギースペクトル計測を行います。「config」タブにて以下の設定をした後、 メニュー「Config」をクリックします。

config	file wave	spectrum timespec	trum status	adjust debug	mode l	nist me	as. time 01	:00:10	real time (00:00:00	file size	(Byte) 0.000 acq. save erro
CH enable	signal type	baseline restorer polarity filter(μs)	threshold _{timing} (digit) type	CFD CF function de (multiple) (di	=D CFD day walk igit) (digit)	QDC sum/peak	QDC pretrigger (ns)	QDC filter (ns)	QDC integral range(ns)	QDC full scale (multiple)	QDC LLD (digit)	QDC ULD (digit)
CH1	nomal sig 🖕	neg 👞 129µ 👞	3 🔶 CFD 🖵	x0.21 🔪 10	ins 💌 1 🚔	sum 🕌	Ons 🖉	20ns 🖕	104 🔷	1/1 🖉	6 🔶	8000 🗮
CH2	nomal sig 🖕	neg 👞 129µ 👞	4 🔶 CFD 🖵	x0.21 🔪 10	ins 😱 2 🚔	sum 🖕	Ons 🔎	20ns 🖕	104 🔷	1/1 🖵	6 🔶	8000 🗮
СНЗ	nomal sig 🖕	neg 👞 129µ 👞	4 🔶 CFD 🖵	x0.21 🗶 10	ins 😱 2 🚔	sum 🖕	Ons 👻	20ns 🖕	104 🔷	1/1 🖵	6 🔶	8000 🗮
CH4	nomal sig 🖉	neg 👞 129µ 👞	4 🔶 CFD 🖵	x0.21 🗶 10	ins 💌 2 🚔	sum 🖕	Ons 💌	20ns 👻	104 🔷	1/1 🖵	6 🔶	8000 🗮
CH5	nomal sig 🖉	neg 👞 129µ 👞	4 🔶 CFD 🖉	x0.21 💌 10	ins 💌 2 🖈	sum 🖕	Ons 💌	20ns 👻	104 🔷	1/1 🖵	6 🔶	8000
CH6	nomal sig 💌	neg 👞 129µ 👞	4 🔶 CFD 🜉	×0.21 💌 10	ins 🗨 2 🖈	sum 👻	Ons 💌	20ns 👻	104 🔷	1/1 🖉	6 🔶	8000
CH7	nomal sig 🗨	neg 👞 129µ 👞	4 🔶 CFD 🜉	×0.21 🖵 10	ins 🔪 2 🔶	sum 👻	Ons 💌	20ns 👻	104 🔷	1/1 🖉	6 🔶	8000
CH8	nomal sig 😱	neg 👞 129µ 👞	4 🔶 CFD 🖵	×0.21 🔪 10	ins 🔪 2 🔶	sum 👻	Ons 💌	20ns 👻	104 🔷	1/1 🖉	6 🔶	8000
CH9	nomal sig 😱	neg 👞 129µ 👞	4 🔶 CFD 🖵	×0.21 🖵 10	ins 🔪 2 🔶	sum 👻	Ons 🖉	20ns 👻	104 🔶	1/1 🖵	6 🔶	8000
CH10	nomal sig 😱	neg 👞 129µ 👞	4 🔶 CFD 💂	×0.21 🖵 10	ins 🔪 2 🔶	sum 👻	Ons 🖉	20ns 👻	104 🔶	1/1 🖵	6 🔶	8000
CH11	nomal sig 🖕	neg 👞 129µ 👞	4 🔶 CFD 💂	×0.21 🖵 10	ins y 2 🔶	sum 👻	Ons 👻	20ns 👻	104 🔶	1/1 🖵	6 🔶	8000
CH12	nomal sig 🗨	neg 👞 129µ 👞	4 🔶 CFD 🖵	x0.21 🖵 10	ins 🗨 2 🚔	sum 👻	Ons 👻	20ns 👻	104 🔶	1/1 🖵	6 🔶	8000
CH13	nomal sig 🗨	neg 👞 129µ 👞	4 🔶 CFD 🜉	x0.21 🔪 10	ins 💌 2 🖈	sum 👻	Ons 👻	20ns 👻	104 🔶	1/1 🖵	6 🔶	8000
CH14	nomal sig 🗨	neg 👞 129µ 👞	4 🔶 CFD 🖉	x0.21 🔪 10	ins 💌 2 🖈	sum 👻	Ons 👻	20ns 👻	104 🔷	1/1 🖉	6 🔶	8000
CH15	nomal sig 🗨	neg 👞 129µ 👞	4 🔶 CFD 🜉	x0.21 🔪 10	ins 💌 2 🚔	sum 🖵	Ons 💌	20ns 👻	104 🔷	1/1 🖉	6 🔶	8000
CH16	nomal sig 😱	neg 👞 129µ 👞	4 🔶 CFD 🖵	x0.21 🔪 10	ins 🔪 2 🔶	sum 💌	Ons 💌	20ns 🕌	104 🔷	1/1 🖉	6 🔷	8000
	mode hist	measurementime(sec) 01:00:10 list read byt 100000	int en te(byte) ti	ergy spectrum ON,]] me spectrum ON/OI]]	/OFF FF							

図24 時間スペクトル計測前エネルギースペクトル計測設定(エネルギー全範囲)

「spectrum」タブを開き、メニュー「Clear」→「Start」の順にクリックします。実行後以下のスペクトルが表示されます。スペクトルの形状や計数を確認しつつ、「ROI start」と「ROI end」を使ってピーク範囲の目安を設定します。

図25 時間スペクトル計測前エネルギースペクトル計測(エネルギー全範囲)

次に、時間計測の対象となるエネルギー(この例の場合は²²Naの511keVピーク)を絞り込む為に以下の設定をします。前ページの「ROIstart」と「ROIend」にて目安を付けた値を、下図赤色枠の「config」 タブ内「QDC LLD」に対して「ROI start」を、「QDC ULD」に対して「ROI end」を設定します。

config	file wave	spectrum	timespec	trum	status a	djust debu	g	mode	list	meas. tim	• 01	L:00:10	real time	00:00:0	0 file size	(Byte) 0.000	acq. save	error
CH enable CH1 CH2 CH3 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4	tie wave signal type nomal sig v nomal sig v	polarity neg v neg v	trmespec baseline restorer filter(µs) 129µ ♥ 129µ ♥	threshold (digit)	status a d timing type CFD v CFD v	gjust debu CFD function (multiple) x0.21 v x0.21 v	99 CFD delay (digit) 10ns v 10ns v	CFD walk (digit) 1 1 4 2	QDC sum/peas sum _ sum _	Ak CDC preterior (ns) Ons Ons Ons Ons Ons Ons Ons Ons		QDC filter 20ns ¥ 20ns ¥	QDC integral range(ns) 104 4 104 104 104 104 104 104 104 104 104 104	QDC full scale (multiple) 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	QDC (digit) 6 7	QPC (a) (a) (a) (a)		
CH16	mode list	The state of the s	measuremetime(sec) 01:00:10 list read by 100000	te(byte)	ene i i i i i i	rgy spectrum e spectrum Of	ON/OFF	2	sum			20hs	104	4/1	6	8000		

図26 時間スペクトル計測前エネルギースペクトル計測(エネルギー範囲絞り込み設定)

(4) 時間スペクトル計測

スペクトルの計測を行う場合、「timespectrum ON/OFF」のチェックを入れ、「config」タブにて以下の設定をした後、メニュー「Config」をクリックします。「mode」が「list」モードであることに注意してください。このモードにて高計数で計測を行うと、パソコンに計算の負荷がかかり、挙動が不安定になる場合がありますのでご注意ください。

config	file wav	spectrum	timespectrum	status a	djust debu	p	mode	list	meas.	time 0 1	L:00:10	real time	00:00:0	0 file size	e(Byte) 0.000	ac	q. save	error
CH enable CH1 CH2 CH3 CH4 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10	file wav signal type nomal sig _ nomal sig _	polarity polarity enegv neg	timespectrum baseline restore fiter(µs) restore tore 129µ v 4 129µ v 4 4	status ≥ nold timing type CFD w CFD w CFD w	djust debu CFD function function x0.21 x0.21 x x0.21 x	g CED delay (digit) 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v	mode CFD walk (digit) 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	QDC sum/per sum sum sum sum sum sum sum sum		time 01 (pCC retrigger ns v ns v	QDC filter (ns) 20ns v 20ns v 20ns v 20ns v 20ns v 20ns v 20ns v 20ns v 20ns v 20ns v	Preal time QDC integral range(ns) 104	QDC full scale (multiple) 1/1	0 file size QDC LLD 6 @ 6 @ 6 @ 6 @ 6 @ 6 @ 6 @ 6 @ 6 @ 6 @	(Byte) 0.0000 QDC ULD ULD (digit) 8000 (H 8000 (H	ac	1. save	error
CH11 CH12 CH13 CH14 CH15 CH16	nomal sig (nomal sig ()	<pre>negv negv negv negv negv </pre>	129µ 4 100000 10	CFD	x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v x0.21 v	10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 10ns v 0N/OFF	2 00 2 00 2 00 2 00 2 00 2 00 2 00	sum sum sum sum sum			20ns x 20ns x 20ns x 20ns x 20ns x 20ns x	104 104 104 104 104 104 104	1/1 • 1/1 •	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8000 (*) 8000 (*) 8000 (*) 8000 (*) 8000 (*) 8000 (*)			

図27 時間スペクトル計測設定

「timespectrum」タブを開き、メニュー「Start」をクリックします。実行後以下のスペクトルが表示されます。画面右下側「ROI」部を設定することで、時間分解能「FWHM(ps)」が算出されます。

図28 時間スペクトル計測

計測を終了する場合は、メニュー「Stop」をクリックします。

7. ファイル

7.1. ヒストグラムデータファイル

(1)ファイル形式カンマ区切りのCSV テキスト形式

(2) ファイル名

任意

(3)構成

「Header」部と「Calculation」部と「Status」部と「Data」部からなります

•Header(ヘッダー)	部	
Measurement mode	:	計測モード。
Measurement time	:	計測設定時間。単位は秒
Real time	:	リアルタイム
Start Time	:	計測開始時刻
End Time	:	計測終了時刻
※以下CH毎に保存		
WAS	:	入力信号タイプ
SGD	:	"O"固定
POL	:	極性
GSL	:	"O"固定
EPD	:	"100"固定
FLK	:	ベースライン時定数
CTH	:	CFD スレッショルド
TTY	:	タイミングタイプ
CCF	:	CFD ファンクション
CDL	:	CFDディレイ
CWK	:	CFD walk
LIT	:	QDC サム or ピーク
PTS	:	QDC プリトリガー
LIG	:	QDC フィルター時定数
AFS	:	QDC 積分縮小
CLD	:	QDC LLD
CUD	:	QDC ULD
PWD	:	"8"固定
PDN	:	"152"固定
RST	:	"10"固定

※以下単一に保存

MOD	:	モード
MTM	:	計測時間
MEMO	:	メモ

•Calculation (計算) 部

※以下 ROI 毎に保存

ROL_ch	:	ROIの対象となった入力チャンネル番号。
ROI_start	:	ROI開始位置(ch)
ROI_end	:	ROI終了位置(ch)
Enegy(keV)	:	ROI 設定のエネルギー(keV)
peak(ch)	:	ROI間のピーク位置(ch)
centroid(ch)	:	ROI間の中心位置(ch)
peak(count)	:	ROI間のピークchカウント
gross(count)	:	ROI間のカウント数の総和
gross(cps)	:	ROI間のカウント数のcps
net(count)	:	ROI間のバックグラウンドを差し引いたカウント数の総和
net(cps)	:	ROI 間のバックグラウンドを差し引いたカウント数の総和の cps
FWHM(ch)	:	ROI間の半値幅(ch)
FWHM(%)	:	ROI 間の分解能(%)
FWHM(keV)	:	ROI間の半値幅(keV)
FWTM(keV)	:	ROI間の全値幅(keV)

・Status (ステータス) 部

※以下 CH 毎に保存

outtput count	:	アウトプットカウント
outtput rate	:	アウトプットカウントレート
dead time	:	デットタイム比

・Data (データ) 部

チャンネル毎のヒストグラムデータ。最大4096点。

APU8516-8 取扱説明書 TAPDB024-002

7.2. リストデータファイル

(1) ファイル形式

バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式

(2) 構成

APU8516-8 は、list モード時に以下のフォーマットのバイナリデータをPC へ逐次送信します。

bit79						64			
			TDC[5	5540]					
63									
			TDC[3	3924]					
47	47								
			TDC[238]					
31			24	23		16			
	TDC[70]			TDCFP[70]				
15	12	11				0			
CH[30)]			QDC [11.0]				

図 29 list データフォーマット(10Byte(80Bit))

list データの詳細:

Bit79からBit24	TDC カウント。56bit。 1Bit あたり 2ns。
Bit23 から Bit16	TDCFP(小数部)カウント。8bit。1bit あたり 7.8125ps。サンプリングポイ
	ント間の内挿(2ns ÷ 256 = 7.8125 ps)
Bit15からBit12	CH番号。0:CH1, 1:CH2, 2:CH3, 3:CH4, 4:CH5, 5:CH6, · · · , 15:CH16
Bit11からBitO	QDC 積分値。符号無 12 ビット整数。収集した波形にフィルタをかけ、スレッシ
	ョルドを超えたところから、設定範囲間の波形の積算値。

8. 終了

メニュー「File」-「quit」をクリックします。クリック後、本アプリは終了し、画面が消えます。 次回起動時は、終了時の設定が反映されます。

株式会社テクノエーピー

TEL.: 029-350-8011 FAX.: 029-352-9013 URL: http://www.techno-ap.com 住所:〒312-0012 茨城県ひたちなか市馬渡 2976-15