デジタルパルスプロセッサ APV8102-14MWPSAGb 取扱説明書

第2.2版 2017年03月

- 目	次	—
-----	---	---

1.		安全上の注意・免責事項	З
2.		概要	4
2.	1.	概要	4
2.	2.	仕様	5
2.	З.	改定履歴	5
З.		外観	6
З.	1.	外観	6
4.		セットアップ	8
4.	1.	アプリケーションのインストール	8
4.	2.	接続	8
4.	З.	ネットワークのセットアップ	8
5.		アプリケーション画面	10
5.	1.	起動画面	10
5.	2.	config タブ	13
5.	З.	file タブ	19
5.	4.	wave タブ	20
5.	5.	spectrum タブ	22
5.	6.	dump タブ	24
6.		計測	25
6.	1.	histo モードでのエネルギースペクトル計測	25
6.	2.	dump モードでのメモリダンプ及びメモリ読み出し計測	30
7.		ファイル	35
7.	1.	ヒストグラムデータファイル	35
7.	2.	波形データファイル	37
7.	З.	dump データファイル	38
8.		終了	40
9.		その他	41
9.	1.	DPP 初期設定に失敗した場合	41
9.	2.	データ読み込みに失敗した場合	41
9.	З.	外部入力(10MHz クロック)使用方法	42
9.	4.	メモリ読込速度の切り替え及び動作確認方法	43

1. 安全上の注意・免責事項

日頃、株式会社テクノエーピー(以下「弊社」)の DPP(Digital Pulse Processor)製品 APV8102-14MWPSAGb(以下「本装置」)のご愛顧を頂き、誠にありがとうございます。本装置 をご使用する前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正し くご使用ください。

弊社製品のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異 常、故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はできません。
- ・ 強い衝撃や振動を与えないでください。
- 分解、改造はしないでください。
- ・ 水や結露などで濡らさないでください。濡れた手での操作もおやめください。
- 発熱、変形、変色、異臭などがあった場合は直ちにご使用を止めて弊社までご連絡ください。

- 本装置の使用温度範囲は室温とし、結露無いようにご使用ください。
- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- 本装置は高精度な精密電子機器です。静電気にはご注意ください。
- 本装置は、ほこりの多い場所や高温・多湿の場所には保管しないでください。
- 携帯電話やトランシーバー等、強い電波を出す機器を近づけないでください。
- 電気的ノイズの多い環境では誤作動のおそれがあります。
- 本装置の仕様や本書及び関連書類の内容は、予告無しに変更する場合があります。

2. 概要

2.1. 概要

APV8102-14MWPSAGb は高速・高分解能 ADC(1GHz, 14bit)を 2CH 搭載した波形取得/解 析ボードです。FPGA による 1GHz リアルタイムの解析に加え、高速な大容量メモリ (512MB×2)を搭載することで 1Mcps 以上での波形取得を可能にしました。ギガビットイーサネ ット通信への対応で取得波形データの高速読出しや信号処理によるデッドタイムの無い高速処理(リ ストデータ生成/転送)を高時間分解能・高スループットで実現します。全ての ADC は 1GHz クロ ックにて同期動作をして、複数の高速なシンチレーション検出器からの信号解析などにもご利用い ただけます。また、複数ボード間の同期処理にも対応しており、多 CH 系の解析にも拡張が容易で す。

本書は、本装置を計測制御するためのアプリケーションについて説明するものです。

※本書の記載内容は予告なく変更することがあります。

2.2. 仕様

(1) アナログ入力		
 チャネル数 	:	2CH
・入力レンジ	:	コースゲイン×1 倍時±1V、×3 倍時±3V
・コースゲイン	:	×1、×3
・入力インピーダンス	:	50Ω
(2) ADC		
・サンプリング周波数	:	1GHz
• 分解能	:	14bit
(3) 性能		
・スループット	:	1Mcps 以上
•時間分解能	:	コース:1ns、ファイン:7.8125ps
(4) モード		
・計測モード	:	ヒストグラム、波形、dump(メモリへ波形データ等を格納)
(5) インターフェース		
• LAN	:	Ethernet TCP/IP 1000Base-T(データ取得時)、 UDP(config データ送受信、status データ受信時)
・イベント転送レート	:	約 30MByte/秒
(6) メモリ		
・メモリ	:	1GB/CH
(7) 形状		
• VME 型	:	APV8102-14MWPSAGb
(8) 消費電流		
+5V	:	3.0A(最大)
+12V	:	0.5A(最大)
-12V	:	0.5A(最大)
(9) リフトウェア		
• OS	:	Windows 7 以降、32bit 及び 64bit

2.3. 改定履歴

2015年09月09日	第1版	初版
2017年02月18日	第2版	構成見直し、外部クロックや外部端子説明追記等
2017年03月15日	第2.1版	消費電流値更新、誤字修正等

- 3. 外観
- 3.1. 外観

(1) LED

[電源投入時]	:	E(赤)ADC キャリブレーション(動作時:点灯・点滅、完了時:消灯)
	:	V(黄)メモリキャリブレーション(動作時: 点灯・点滅、完了時: 消灯)
	:	P(緑)電源 ON 時に点灯
[通常]	:	E(赤)メモリ リード時に点灯
	:	∨(黄)メモリ ライト時に点灯
	:	P(緑)電源 ON 時に点灯

(2)	CH1,CH2	:	信号入力用 LEMO コネクタ(Z _{in} :約50Ω)。入力レンジはアプリケーションにてゲイン1倍設定時は+3)/ゲイン3倍設定時は+1)/
(3)	RESET	:	手動のハードウェアリセット(不明トラブル等で通信ができなくなってしまった場合などに使用)
(4)	CLK-I	:	10MHz 外部クロック入力(LV-TTL)、1k_Pull-Down。 ※外部クロックの使用方法は後述「9.3.外部入力(10MHz クロッ ク)使用方法」を参照のこと。
(5) (6)	CLK-O GATE	:	外部クロック入力のモニタ出力(3.3V-TTL) ロジック信号が High レベルの場合にデータの取得を有効にする(LV- TTL)、10k Pull-Up。
(7)	VETO	:	ロジック信号がLow レベルの場合にデータの取得を有効にする(LV- TTL)、10k Pull-Down。
(8)	CLR	:	Low から High (High 時パルス幅 50ns 以上)への遷移(立上エッジ)で データ(時間データも含)をクリア(LV-TTL)、10k_Pull-Down。
(9) (10)	AUX LAN	:	拡張用外部入出力端子(未使用) データ通信用コネクタ。イーサネットケーブルを接続します。

※本基板におけるLV-TTLはLレベル:0~0.8V, Hレベル:2.5~5V

※1k_Pull-Up/Down 表記は基板回路内での 1kΩ によるプルアップ/プルダウン表記
 ※10k_Pull-Up/Down 表記は基板回路内での 10kΩ によるプルアップ/プルダウン表記
 ※CLK-I 端子へのクロック供給は外部クロック使用時のみで計測可。
 ※GATE、VETO、CLR 端子は未接続でも計測可(Pull-Up/Down にてデフォルトロジック信号が確定しているため)

4. セットアップ

4.1. アプリケーションのインストール

APV8102-14MWPSAGb 用アプリケーション(以下本アプリ)は Windows 上で動作します。 ご使用の際は、計測に使用する PC に本アプリの EXE(実行形式)ファイルと National Instruments 社の LabVIEW ランタイムエンジンをインストールする必要があります。

本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インスト ーラには、EXE(実行形式)ファイルと LabVIEW のランタイムエンジンが含まれており、同時に インストールができます。

インストール手順は以下の通りです。

- (1) 管理者権限で Windows ヘログインします。
- (2) 付属 CD-ROM 内「Installer」フォルダ内の「Setup.exe」を実行します。対話形式でイン ストールを進めます。デフォルトのインストール先は、"Ci¥TechnoAP"です。

(3)「スタートボタン」-「TechnoAP」-「APV8102-14MWPSAGb」を実行します。 アンインストールは、「プログラムの追加と削除」から「APV8102-14MWPSAGb」を選択し て削除します。

4.2. 接続

(1) 本装置と PC をイーサネットケーブルで接続します。 PC によってはクロスケーブルをご使用ください。 ハブを使用する場合はスイッチングハブをご使用ください。

4.3. ネットワークのセットアップ

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。
 IPアドレス : 192.168.10.2 ※192.168.10.128 を除く任意の値
 サブネットマスク : 255.255.255.0
 デフォルトゲートウェイ : 192.168.10.1
- (2) VME ラックの電源を ON にします。電源投入後 10 秒間はなにも操作しないでください。
- (3) PC と本装置の通信接続を確認します。Windows のコマンドプロンプトにて ping コマンドを実行し、本装置と PC が接続できるか確認します。本装置の IP アドレスは基板上にあります。

> ping 192.168.10.128

C:¥WINDOWS¥system32¥cmd.exe —	×
Microsoft Windows [Version 10.0.14393] (c) 2016 Microsoft Corporation. All rights reserved.	^
C:¥Users¥Administrator>ping 192.168.10.128	
192.168.10.128 に ping を送信しています 32 バイトのデータ: 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128 192.168.10.128 からの応答: バイト数 =32 時間 <1ms TTL=128	
192.168.10.128 の ping 統計: バケット数: 送信 = 4、受信 = 4、損失 = 0 (0% の損失)、 ラウンド トリップの概算時間 (ミリ秒): 最小 = Oms、最大 = Oms、平均 = Oms	
C:¥Users¥Administrator>	~

- (4) PC にて本アプリを起動してください。 ※本アプリを起動した時に、装置との接続に失敗した内容のエラーメッセージが表示される場合があります。主な原因は以下の通りです。
 - 構成ファイル「config.ini」内「System」セクションのポート定義が不適切な値である。特に「DevConfigPort = 4660」、「DevDataPort = 24」、「SubnetMask = "255.255.255.0"」、「Gateway = "192.168.10.1"」、「ChNumber = 2」 は重要です。PC 側の LAN ケーブルの差し込みが不足している。
 - ・ 本装置側のLAN ケーブルの差し込みが不足している。
 - ・ 本装置の電源が OFF のまま、もしくは、LAN ケーブルの断線。
 - ・ PC 側のネットワーク設定が DHCP になっている。
 - PC 側のネットワーク設定がプライベートアドレス(192.168.10.128 を除く 192.168.10.2 から 255)で設定されていない。
 - ・ PC の省電力モードが機能している。
 - ・ PCの無線LANが有効になっている。

上記の原因でも正しく起動されない場合は以下の方法をお試しください。

・ ケーブルの接続などの確認後、本アプリの再起動をする。

5. アプリケーション画面

5.1. 起動画面

「スタートボタン」-「TechnoAP」-「APV8102-14MWPSAGb」を実行すると、通信確立→ ADC キャリブレーション→キャリブレーション終了にて以下の起動画面が表示されます。

vice D	ev1 🗸	IP add	iress 192.1	6 <mark>8.10.1</mark> 6	memo		POL						n	nem-IDLE	calib,	acq,	save	error	mode	wave
.,	input count	output count	input rate(cps)	output rate(cps)	deadtime (%)	memory used(%)	ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
L :	0.00	0.00	0.00	0.00	0.00	0.00	ROI1 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	measuremen time	24:00:0
	0.00	0.00	0.00	0.00	0.00	0.00	ROI2 : ROI3 :	0	0.00	0.000	0.000	NaN NaN	0.000	NaN NaN	0.0	0.000	0.000	0.000	real time	00:00:0
							ROI4 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	live time	00:00:0
							ROIS :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	dump size	
							ROID :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	(byte)	
							ROI8 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	file size (byte)	
	nomal nomal mode wave	>	neg 👽 3	3 v 0.0 3 v 0.0	85 ₁ 854	170 1 V 100	CFC		x0.21 🗸 x0.21 🗸	10ns 🗸	20 🗣	sum 👽 (ons 🗸 i	10ns 👽	80 9 80 \$	1/1		8191 8191	1 ↓ 1 ↓ 1 ↓ mem_trigger 1 ↓	10 🔤 10 🜩
1 :	nomal nomal mode wave v measurment mo real time v	ode	neg y 🔅	3 v 0.0 3 v 0.0	∲ 85µ ∲ 85µ	3 V 170 3 V 100	Image: CFL Image: CFL Image: CFL		x0.21 😺 x0.21 😺	10ns 👽 10ns 👽	20 • 20 •	sum 👽 (Ins V	10ns 🗸	80 0 80 0	1/1		 ♦ 8191 ♦ 8191 	I I I I I I mem_trigger I I I I I	10 🗣
	nomal nomal mode wave v measurment mu real time v measurement ti 24:00:00 \$	ode	neg 👽 5	3 v 0.0 3 v 0.0	∲	170 170 100	CFC		x0.21 v x0.21 v	10ns v 10ns v	20	sum 🔽 1	ons 🔍 1	10ns 👿 10ns 👽	80 9 80 9			 8191 8191 	I I I I mem_trigger I I I I I I I I I	10 🔄 10 💽
	nomal nomal mode wave measurment m real time weasurement ti 24:00:00	vde		3 v 0.0 3 v 0.0	∲	170 1 v 100	CFC		x0.21 v x0.21 v	10ns v	20 ♥ 20 ♥	sum 🔽 1	ons V	10ns	80 🖗			 € 8191 € 8191 	(♥) 1 ♥ 1 ♥ mem_trigge 1 ♥ 1 ♥	10
	nomal nomal mode wave v measurment m real time v measurement ti 24:00:00 ¢	ne(sec)	neg 🔪 🤌		∲ 85µ ∲ 85µ	170 100	CFL CFL		x0.21 ×	10ns v	20 \$ 20 \$	sum v 1	ons V	10ns 🔍	80 🗣			 €191 €191 €191 	(Ф) 1 (Φ) (Φ) 1 (Φ) mem_trigge 1 (Φ) 1 (Φ) 1	10 (*) 10 (*) _point
	nomal nomal mode wave wave measurment m real time 24:00:00 \$	vde] me(sec)				1 v 170 1 v 100	CFI CFI		x0.21 × x0.21 ×	10ns 文 10ns 文	20 (\$) 20 (\$)	sum v 1	uns v i	10ns 🔽	80 0 80			 € 191 8191 	(中) 1 (+) (+) 1 (+) mem_trigger 1 (+) 1 (+) (+)	10
	nomal nomal wave v messurment m real time v 24:00:00 ¢	ode			4 85, 4 85,	4 v 170 4 v 100	CFL CFL		x0.21 v x0.21 v	10ns v 10ns v	20	sum v i	uns v i	10ns 🔽	80 0 80			 ♦ €191 €191 €191 	(\$\P\$) 1 \$\P\$ (\$\P\$) 1 \$\P\$ mem_trigger 1 \$\P\$ 1 \$\P\$ \$\P\$	10 (\$\vec{1}{2})

図 3 起動画面

各項目の内容は下記の通りです。

・メニュー

「File」、「Edit」、「Config」、「C	Clear」	、「Start」、「Stop」、「Memory」から構成され
ます。		
「File」 - 「open config」	:	設定ファイルの読み込み
「File」 - 「save config」	:	現在の設定をファイルに保存
「File」 - 「save histogram」	:	ヒストグラムをファイルに保存
「File」 - 「save wave」	:	波形をファイルに保存
「File」 - 「save image」	:	画面を PNG 形式画像で保存
「File」 - 「quit」	:	終了
「Edit」 - 「copy setting of CH1」	:	CH1 の設定を CH2 にコピー
「Edit」 - 「IP config」	:	本装置の IP アドレス等変更画面の表示
「Config」	:	本装置へ全設定を送信
「Clear」	:	本装置内ヒストグラムデータを初期化
「Start」	:	本装置内へ計測開始を送信
「Stop」	:	本装置内へ計測停止を送信
[Memory] - [Stop Read Memory]] :	メモリ読込みを中止
「Memory」-「CH1-Read」	:	CH1 のメモリデータの読込み
「Memory」-「CH2-Read」	:	CH2 のメモリデータの読込み

「Memory」 - 「All Erase(Zero-fill)」	:	各 CH のメモリデータの全領域をバイナリデータ
		の"O"で上書き
[Memory] - [All Erase(Increment)]	:	各 CH のメモリデータの全領域を波形 8 点ごと
		に"+1"したデータで上書き
「Memory」 - 「Erase(Zero-fill)」	:	CH1 のメモリデータの全領域をバイナリデータ
		の"O"で上書き
「Memory」 - 「Erase(Increment)」	:	CH1 のメモリデータの全領域を波形 8 点ごと
		に"+1"したデータで上書き

・タブ

「config」	:	本装置へ CH 設定及び計測に関する設定
「file」	:	波形、dump データの保存の設定
[wave]	:	入力波形、CFD 波形、QDC 波形の表示
[spectrum]	:	QDC データによるヒストグラム表示
[dump]	:	取得波形のプレビュー表示、データ保存の状態表示

• CH 部

CH 毎の状況を表示します。		
「input count」	:	トータルカウント。入力のあったイベント数
「output count」	:	スループットカウント。入力に対し処理されたイベント数
Finput rate(cps) J	:	カウントレート。1 秒間の入力のあったイベント数
Foutput rate(cps)]	:	スループットカウントレート。1 秒間の入力に対し処理さ
		れたイベント数
「deadtime(%)」	:	デットタイム比
「memory used(%)」	:	dump モード時のメモリ使用量。100%で全領域使用。

• ROI 部

ROI 間の算出結果を表示します。

「peak(ch)」	:	最大カウントの ch
「centroid(ch)」	:	全カウントの総和から算出される中心値(ch)
「peak(count)」	:	最大カウント
「gross(count)」	:	ROI 間のカウントの総和
「gross(cps)」	:	ROI 間のカウントの CPS
「net(count)」	:	ROI 間のバックグラウンドを差し引いたカウントの総和
「net(cps)」	:	ROI 間のバックグラウンドを差し引いたカウントの CPS
「FWHM(ch)」	:	半值幅(ch)
FWHM(%)」	:	半値幅(%)。半値幅:ROI 定義エネルギー×100
「FWHM」	:	半値幅
「FWTM」	:	1/10幅

•	device	:	計測対象とする本装置を選択します。複数台使用時のみ。
•	IP address	:	構成ファイルにて定義し、「module」にて選択した本装置の
			IP アドレスを表示
•	memo	:	測定時のメモなど任意のテキスト入力
•	mem-READ/IDLE	:	メモリ読込み時に点灯
•	calib.LED	:	キャリブレーション中に点灯
•	acq. LED	:	計測中に点滅
•	save LED	:	リストデータ保存中に点滅
•	error LED	:	エラー発生時点灯
•	mode	:	モード。「hist」、「wave」または「dump」を表示
•	measurement time	:	設定した計測時間
•	real time	:	有効先頭 CH のリアルタイム(実計測時間)。計測終了時
			measurement time と等しくなります
•	live time	:	有効先頭 CH のライブタイム(有効計測時間)。real time -
			dead time
•	dump size(byte)	:	メモリ読込み中のデータ容量(byte)を表示します。
•	file size(byte)	:	メモリ読込みデータの保存中のファイルの容量(byte)を表示
			します。

5.2. config タブ

ce De	v1 🗸	IP add	ress 192.1	5 <mark>8.10.1</mark> 6	memo		-801						m	em-IDLE	calib,	acq,	save	error	mode	wave
	input count	output count	input rate(cps)	output rate(cps)	deadtime (%)	memory used(%)	ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
-82	0.00	0.00	0.00	0.00	0.00	0.00	ROI1 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	measuremen time	24:00:0
	0.00	0.00	0.00	0.00	0.00	0.00	ROI2 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	real time	00:00:0
							ROI4 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	live time	00.00.0
							ROI5 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	4	00.00.0
							ROI6 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	(byte)	
							ROI8 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	file size (byte)	
: [signal type nomal nomal mode wave v	~	polarity (neg v > neg v >	multiple) (mV) 3 0.0 3 0.0 0.0	filte 85µ \$ 85µ	r(µs) (dig 170 170 100	이 type 이야 CFD 이야 CFD		x0.21 v x0.21 v	10ns 👽 10ns 👽	20 🔍 1 20 🗣	sum 👽 (Ins V It	Dns 🤍 8 Dns 👽 8	80 ¢ 80 ¢			 ♦ 8191 ♦ 8191 	(nst) (1 0 1 0 mem_trigger 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 🔄 10 🔤
	signal type nomal mode wave wave measurment m measurement ti	ode me(sec)	polarity (neg v > neg v >	muttiple) (mV) 3 v 3 v 0.0 0.0	filte ♦ 85µ ♦ 85µ	r(µs) (dig 170 170 100			x0.21 x0.21 x0.21	10ns v 10ns v	20	sum 🔪 (Ins V 14	Dns 🤍 8	80 ∳ 80 ∳	1/1 5		 (light) ♦ 8191 8191 8191 	(nst) 1 0 1 0 1 0 mem_trigger 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 IV
	signal type nomal nomal mode wave v measurment m real time v measurement ti 24:00:00 ¢	ode	polarity 2 neg 2 2 neg 2 2	multiple) (mV) 3 v 3 v 0.0 0.0	filte ∲ ∲ 85µ	r(µs) (dig 1 v 170 1 v 100	Image: state		x0.21 ×	10ns 😺 10ns 😺	20	sum 🗸 (lins v lins v	Dns 👽 8	ao ∳ ao ∳			 (aga) <li< td=""><td>(ns) (1 0 mem_trigger 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></li<>	(ns) (1 0 mem_trigger 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 March Control of Second S	signal type nomal mode wave v measurment m real time v 24:00:00 ¢	xde	polarity solution in the second secon	muitiple) (mV) 3 2 0.0 3 2 0.0 0.0	filte	(µs) (09 1 ~ 170 1 ~ 100			(indepe) x0.21 v x0.21 v	10ns v 10ns v	20 (\$) 20 (\$)	sum 🗸 1	10 s v 11	Dns 👽 8	10 Φ 10 Φ			 (aga) €191 €191 €191 	(ns) ((ns) (1 () mem_trigger 1 () 1 ()	100 0
The second	aignal type nomal mode measurment m measurement ti 24:00:00 \$	vde	polarity 5	multiple) (mV) 3 V 3 V 0.0 0.0	filte	(LIS) (US) (US) (US) (US) (US) (US) (US) (U			x0.21 v x0.21 v	10ns v 10ns v	20 Φ 20 Φ	sum 🤍 1	Ins V III	ons v 8	10 ♦ 10 ♦			(Jugar) (Ju	(ns) ((ns) (1 () mem_trigger 1 () 1 ()	nav el ta el point

図 4 config タブ

各 CH に関わる設定です。

• CH enable : CH 使用可否。通常は全 CH を enable (押した) 状態にしてください。 : 入力波形のタイプを選択します。NIM 信号や Timing 信号入力時は「fast • signal type sig」に設定してください。その他は「nomal sig」を設定してください。 polarity : 入力信号の極性を、正極性の場合は「pos」、負極性の場合は「neg」から 選択します。 : アナログのゲイン(増幅値)を「×1」または「×3」から選択します。入 • analog gain カレンジは「×1」を選択時は±3V、「×3」を選択時は±1Vとなります。 : アナログのオフセットを選択します。範囲は±1000mV です。通常は • analog offset 0.0mV に設定してください。 :ベースラインレストアラーの時定数を設定します。Ext(AutoBLR なし)、 • baseline restorer filter Fast、4µs、85µs、129µs、260µsから設定します。通常は85µs に設定します。 • threshold : 入力信号の波形取得の閾値を設定します。単位は digit です。設定範囲は O から 8191 です。wave モードで「raw」の波形を見ながら、ノイズレベ ルより大きい値で設定します。

اما محمد ما ف		Set above noise
threshold		1 mm h h
TDC, QDC calc enable -	rise edge	

13 / 47

• timing type

: タイムスタンプする際の波形を、CFD 波形、LED (生波形) から選択しま す。

「LET」: リーディングエッジ(Leading Edge Timing) あるトリガーレベル t に到達したタイミングです。トリガー取得タイミン グは a' と b' のように波高が変われば時間も異なります。

14 / 47

「CFD」: コンスタントフラクションタイミング (Constant Fraction Disicriminator Timing)

図 6 コンスタントフラクションタイミング(Constant Fraction Disicriminator Timing)の考 え方

上図の異なる波形 a と b に対し、以下の波形 c, d と e, f と g, h のような波形を生成します。
 波形 c, d : 波形 a と b を CFD function 倍し、反転した波形
 波形 e, f : 波形 a と b を CFD delay 分遅延した波形
 波形 g, h : 波形 c と e を加えた波形と d と f を加えた波形

波形gとhのゼロクロスタイミングである CFD は、波形の立ち上がり時間が同じであれば、波高が変化しても一定である、という特徴があります。

: CFD 波形整形用に元波形を縮小するための倍率。0.03 倍、0.06 倍、 CFD function 0.09 倍、0.12 倍、0.15 倍、0.18 倍、0.21 倍、0.25 倍、0.28 倍、 0.31 倍、0.34 倍、0.37 倍、0.40 倍、0.43 倍、0.46 倍 から設定し ます。

• CFD delay : CFD 遅延時間を設定します。1ns から 24ns まで 1ns 単位で設定します。

- CFD walk
 - : タイムスタンプする閾値を設定します。単位は digit です。wave モードで 「CFD」の波形を見ながら、Oクロス位置より近辺の値で設定します。

• QDC sum or peak : QDC データの出力形式を選択します。PEAK 値、SUM 値 から選択しま す。

QDC pre trigger : 積分値算出用に波形整形を開始するタイミングを、Ons、-8ns、-16ns、
 -32ns、-40nsから選択します。

QDC filter
 : 積分値算出用の波形を整形するための時定数を設定します。設定は Ext、
 10ns、20ns、50ns、100ns、200ns から選択します。

・QDC integral range : QDC の積分時間を選択します。範囲は Ons から 32000ns です。Dump モードを使用する時は必ず 96ns 以下に設定してください。

・QDC full scale : QDC データのゲインを設定します。設定は 1/1、1/2、1/4、1/8、 1/16、1/32、1/64、1/128、1/512 から選択し、QDC 値が 8191 以下になるようにします。

- QDC LLD
 : QDC の LLD(Lower Level Discriminator)を設定します。単位は digit で す。この閾値より下の積分値はタイムスタンプデータ、積分値データを取 得しません。ULD より小さい値に設定します。設定範囲は 0 から 8191 です。hist モード時のみに有効な設定値です。
- QDC ULD : QDC の ULD(Upper Level Discriminator)を設定します。単位は digit です。この閾値より上の積分値はタイムスタンプデータ、積分値データを取得しません。LLD より大きい値に設定します。設定範囲は 0 から 8191です。hist モード時のみに有効な設定値です。

- FRC start cnt : 波形の FALL 値を算出する為の計算 start 位置の設定。1ns 以上かつ FRC stop cnt 値以下に設定してください。※threshold を越えてから FRC start cnt(ns)より計算をスタートします。
- FRC stop cnt : 波形の FALL 値を算出する為の計算 stop 位置の設定。1ns 以上かつ FRC start cnt 値以上に設定してください。※threshold を越えてから FRC stop cnt(ns)で計算を終了します。

• mem_trigger_point : dump モードでの波形取得位置の設定。1 digit は 8ns に相当します。

• mode

: hist、wave、dumpからモードを選択します。

- hist : 入力信号を積分しスペクトルを表示します。
- wave : 入力信号をデジタイズし波形を表示します。
- dump : 入力信号をデジタイズした波形をメモリに格納します。格納し たメモリは何度でも読み返す事が可能です。
- mesurement mode : real time、live timeから選択します。選択した時間モードで計測が終了されます。
- mesurement time :計測時間を指定します。

5.3. file タブ

	V	IP addres	s 192.16	8.10.16	memo		207						me	m-IDLE	calib,	acq,	save	error	mode	dump
inp	out unt	output count r	input ate(cps)	output rate(cps)	deadtime (%)	memory used(%)	ROI	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cns)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)	measurement mode	real time
: 0.	.00	0.00	0.00	0.00	0.00	0.00	ROI1 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	measuremen	24:00:0
: 0.	.00	0.00	0.00	0.00	0.00	0.00	ROI2 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	time real time	00.00.0
							ROI3 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000		00:00:0
							ROIS :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	live time	00:00:0
							RO16 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	dump size (byte)	0
							RO17 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	file size	
_	-						ROI8 :	0	0.00	0.000	0.000	NaN	0.000	NaN	0.0	0.000	0.000	0.000	(byte)	1
									du	:#Data¥dump_,l	bin file nam	16								
istogram fil C:¥Data¥his	le path stocsv		P						0	3.001										
istogram fil C:¥Data¥hir istogram fil	le path stocsv le save time	e(sec)							0	180										
istogram fil C:¥Data¥hit istogram fil 10 \$	le path stocsv le save time	e(sec)	a	•					U	100]										
J C:¥Data¥hit istogram fil	le path stocsv le save time	e(sec)		•					U											
J C:¥Data¥his istogram fil	le path stocsv le save time	e(sec)		-					U											

図 7 file タブ

保存に関する設定です。

• histogram save	計測終了時に「spectrum タブ」に表示されているヒストグラムデータを
	ファイルに保存します。ファイルの保存先は後述のフォーマットになりま
	す。「mode」で「hist」を選択時のみ有効です。
• histogram continuous save	ヒストグラムデータを設定時間間隔で連続してファイルに保存するか否か
	を設定します。「mode」で「hist」を選択時のみ有効です。
• histogram file path	ヒストグラムデータファイルの絶対パスを設定。拡張子無しも可です。
	※注意※このファイル名で保存されるのではなく、このファイル名をもとにし
	て以下のフォーマットになります。
	例:「histogram file path」に「C:¥Data¥histogram.csv」、
	「histogram file save time(sec)」に「10」と設定し、日時が
	2010/09/01 12:00:00の場合は、
	「C:¥Data¥histogram_20100901_120000.csv」というファイル名で
	データ保存を開始します。 10 秒後に「C:
	¥Data¥histogram_20100901_120010.csv」で保存します。
	※上記「120010」が「120009」または「120011」になる場合あり。
hisutogram file save time(sec)	ヒストグラムデータの連続保存の時間間隔を設定します。単位は秒です。
	設定範囲は 5 秒から 3600 秒です。
• dump save	メモリ読込み動作(ダンプ)時にデータをファイルに保存するか否かを設定し
	ます。「dump」を選択時のみ有効です。
• dump file path	dump データファイルの絶対パスを設定します。拡張子無しも可です。
• dump file number	:dump データファイルに付加される番号の開始番号を設定します。O か
	ら 999999 まで。999999 を超えた場合 0 にリセットされます。

5. 4. wave タブ

図8 wave タブ

波形表示に関する設定です。

グラフ	:	波形グラフ。「config」タブ内「mode」にて「wave」を選択した場合、
		波形を表示します。
• on/off	:	波形表示の有無を指定します。SIG1 から SIG8 まで 8 波形表示させるこ
		とができます。
• CH	:	表示させる波形の CH を選択します。
• Type	:	表示させる波形の種類を選択します。
		「raw」 -ADC に取り込まれ、BLR 処理された波形
		「CFD」 -CFD 波形整形された波形
		「Filter」QDC で積分される波形
• trigger edge	:	トリガーの極性を選択します。通常は pos を選択してください。
 threshold 	:	トリガーの閾値を設定します。
• trigger point	:	波形の表示開始ポイントを指定します。※グラフ中のカーソルでも設定で
		きます。
• wave free run	:	チェックを外すとトリガーされた波形が表示され、チェックするとトリガ
		ーフリーの波形が表示されます。
 accumlation 	:	波形データ重ね合わせの有効・無効を選択します。
• X axis calibratio	n	: X軸の単位を選択します。
•×軸範囲	:	X 軸上で右クリックして「自動スケール」をチェックすると自動スケール
		になります。チェックを外すと自動スケールでなくなり、X 軸の最小値と
		最大値が固定になります。最小値または最大値を変更する場合は、マウス
		のポインタを変更する数値の上に置き、クリックまたはダブルクリックす
		20 / 47

ることで変更できます。

- Y 軸上で右クリックして「自動スケール」をチェックすると自動スケール になります。チェックを外すと自動スケールでなくなり、Y 軸の最小値と 最大値が固定になります。最小値または最大値を変更する場合は、マウス のポインタを変更する数値の上に置き、クリックまたはダブルクリックす ることで変更できます。
- + : カーソル移動ツールです。ROI 設定の際カーソルをグラフ上で移動可能 です。
 - : ズーム。クリックすると以下の 6 種類のズームイン及びズームアウトを 選択し実行できます。

図1 グラフ ズームイン及びズームアウトツール

	(1)四角形	:	ズームこのオプションを使用して、ズーム領域の
			コーナーとするディスプレイ上の点をクリックし、
			四角形がズーム領域を占めるまでツールをドラッ
			グします。
	(2)X-ズーム	:	X 軸に沿ってグラフの領域にズームインします。
	(3) Y-ズーム	:	Y 軸に沿ってグラフの領域にズームインします。
	(4)フィットズーム	:	全ての X および Y スケールをグラフ上で自動ス
			ケールします。
	(5)ポイントを中心にズームアウト	:	ズームアウトする中心点をクリックします。
	(6)ポイントを中心にズームイン	:	ズームインする中心点をクリックします。
:	パンツール。プロ	ット	をつかんでグラフ上を移動可能です。

<m

•,⊕

5. 5. spectrum タブ

図 9 spectrum タブ

spectrum 表示に関する設定です。

グラフ	:	エネルギースペクトル。「config」タブ内「mode」にて「hist」を選
		択した場合または「mode」で「list」を選択し且つ「spectrum
		ON/OFF」のチェックが有効の場合にスペクトルを表示します。
チェック BOX	:	グラフに CH 毎のヒストグラムを表示するか否かの設定をします。
• ROI CH	:	ROI(Region Of Interest)を摘要する CH 番号を選択します。1 つの
		CH 信号に対し、最大8つの ROI を設定可です。
• ROI start (ch)	:	ROI の開始位置を設定します。単位は ch です
• ROI end (ch)	:	ROI の終了位置を設定します。単位は ch です
• energy	:	ピーク位置(ch)のエネルギー値を定義します。60Co の場合、
		1173(keV)や 1332(keV)と設定。「calibration」にて「ch」を選択し
		た場合、ROI 間のピークを検出しそのピーク位置(ch)と設定したエネ
		ルギー値から keV/ch を算出し、半値幅の算出結果に摘要します。
 calibration 	:	X 軸の単位を選択します。設定に伴い X 軸のラベルも変更されます。
		ch : ch(チャネル)単位表示。ROIの「FWTM」の
		「FWHM」などの単位は任意になります。
		eV : eV 単位表示。1 つのヒストグラムにおける 2 種類のピー
		ク(中心値)とエネルギー値の 2 点校正により、ch が
		eV になるように 1 次関数 y=ax+b の傾き a と切片 b を
		算出し X 軸に設定します。ROI の「FWTM」の
		「FWHM」などの単位は"eV"になります。
		22 / 47

 keV : keV 単位表示。1 つのヒストグラムにおける 2 種類のピ ーク(中心値)とエネルギー値の 2 点校正により、ch が keV になるように 1 次関数 y=ax+b の傾き a と切片 b を 算出し X 軸に設定します。ROI の「FWTM」の 「FWHM」などの単位は "keV" になります。例: 5717.9ch に ⁶⁰Co の 1173.24keV、6498.7ch に ⁶⁰Co の 1332.5keV がある場合、2 点校正より a を 0.20397、b を 6.958297 と自動算出します。
 manual : 1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任 意に設定し X 軸に設定します。単位は任意に設定します。
 • Y mapping : グラフの Y 軸のマッピングを選択します。設定に伴い Y 軸のラベルも変 更されます。

linear	:	直線
log :	対数	

23 / 47

5.6. dump タブ

図 10 dump タブ

波形取得(dump)に関わる設定です。

- グラフ : 取得波形プレビュー用グラフ(メモリ読込み動作時に最初の 1 イベント分 (64 点)を表示)。
- ・ dump CH : 読込み中の CH を表示。
- ・ dump file path : file タブで設定した保存先の表示。(確認用)
- ・dump file size :メモリ読込みバイト数の表示。(PC 内部メモリに読込・展開したバイト数)
- TCPDataReadSize : TCP/IP 通信に関連するパラメータ。通常は 524160 のままでご使用 ください。
- X 軸範囲
 X 軸上で右クリックして「自動スケール」をチェックすると自動スケールに なります。チェックを外すと自動スケールでなくなり、X 軸の最小値と最 大値が固定になります。最小値または最大値を変更する場合は、マウスの ポインタを変更する数値の上に置き、クリックまたはダブルクリックする ことで変更できます。
- Y 軸距
 Y 軸上で右クリックして「自動スケール」をチェックすると自動スケールに なります。チェックを外すと自動スケールでなくなり、Y 軸の最小値と最 大値が固定になります。最小値または最大値を変更する場合は、マウスの ポインタを変更する数値の上に置き、クリックまたはダブルクリックする ことで変更できます。

6. 計測

例として、LaBr₃(Ce)検出器(以下検出器)を使用した際の、histo モードでのエネルギースペクト ル計測と、dump モードでのメモリダンプ及びメモリ読み出し計測の操作手順を記載します。

6.1. histo モードでのエネルギースペクトル計測

(1) 環境

図11 エネルギースペクトル計測環境

- ・ 全ての機器(VME ラック、HV(高圧電源)、PC)が OFF であることを確認します。
- ・ 検出器とHVをSHVコネクタのケーブルで接続します。
- ・ 検出器からのアノード出力信号を本装置の CH1 に LEMO コネクタ同軸ケーブルで接続します。 BNC コネクタの場合は、BNC-LEMO 変換アダプタをご使用ください。
- ・本装置とPCをLANケーブルで接続します。
- ・ VME ラックの電源を ON にします。
- ・ PC の電源を ON にします。本アプリを起動します。
- ・ 高圧電源を ON にし、検出器に応じた電圧を印加します。
- ・ この例では ¹³⁷Cs 線源を使用しています。

(2) 波形計測

まず波形モードにて入力されている検出器からの信号を確認します。 「config」タブにて以下の設定をした後、メニュー「Config」をクリックします。

🕞 Digita File Edit	l Pulse Proces t Config	or APV Clear	8102-14MN Start Sto	WPSAGb op N	2CH 1G-AD0 1 <mark>e</mark> mory	C+1GMEM	Ver 2	.2.0														6	- 🗆 ×
device [Dev1 🗸	IP add	iress 192.1	168.10.16	men	no		0.07							Ĩ	mem	IDLE	calib,	acq,	save	error	mode	wave
CH No.	input count	output count	input rate(cps)	outpu rate(cp	t deadtii s) (%)	me memo used(96)	ROI No.	peak (ch)	centroid (ch)	peak (count	gro t) (cou	unt)	gross (cps)	net (count	:)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
CH1 :	0.00	0.00	0.00	0.0	0.0	0.0	00	ROI1 :	0	0.00	0.00	0 0.0	000	NaN	0.00	00	NaN	0.0	0.000	0.000	0.000	measuremen time	24:00:00
27.X678	0.00	0.00	0.00	0.0	0.0			ROI2 :	0	0.00	0.00	0 0.0	000	NaN	0.00	00	NaN	0.0	0.000	0.000	0.000	real time	00:00:00
								ROI4 : ROI5 :	0	0.00 0.00	0.00	0 0.0 0 0.0	000	NaN NaN	0.00	00 00	NaN NaN	0.0	0.000	0.000	0.000	live time	00:00:00
								ROI6 : ROI7 :	0	0.00	0.00	0 0.0	000	NaN	0.00	00	NaN	0.0	0.000	0.000	0.000	dump size (byte)	0
								RO18 :	0	0.00	0.00	0 0.0	000	NaN	0.00	00	NaN	0.0	0.000	0.000	0.000	file size (byte)	0
enable CH1 : CH2 :	file vave signal type nomal nomal wave vave vave vave measurement 24:00:00 4	spectru v ode me(sec)	m dump polarity neg	analog gain (multiple) x3 x3 x3 x3	analog offisit (mV) 0.0 (\$)	baseline restorer filter(µs) 85µ v 85µ v	thresh (digit) 100	old timity typ CF CF	ng e D V	CFD function (multiple) x0.21 v	CFD delay (ns) 10ns	CFD vvalk (digit) 20		QDC sum/peak peak v peak v	QDC pretriggen 0ns v	QD(r filter (ns) 10n 10n		QDC Integral range(ns) 80 4 80 4	QDC 1) 1/1 [1/1] 1/1 [1/1] 1/1 [1/1]	QDC LLD (digit)	QDC ULD (digR) 1	FRC start ort (mt) (mt) (mt) (mt) (mt) (mt) (mt) (mt	FRC stop ont frat 10 (\$) r_point

図 12 波形計測設定

「wave」タブを開き、下図の設定を確認した後、メニュー「Clear」→「Start」の順にクリック します。グラフに検出器からの波形が確認できます。

図 13 波形計測画面

以下の点を注意します。

 信号が表示されているか?されていない場合、トリガーがかかっていない場合がありますので、 まずベースラインを確認するために、「wave」タブ内「wave free run」にチェックをして、 メニュー「Config」→「Clear」→「Start」を実行してください。ベースラインと大まかにど のくらいの波高の信号がきているかを確認できます。

図 14 ベースライン確認中

次に「wave free run」にチェックを外し、「threshold」を 10 くらいから徐々に上げてい き、前ページのように波形がしっかり捉えられる、「threshold」値を控えておきます。この控 えをこの後の設定にも使用します。

・ 波高が大きすぎてサチレーションしていないかを確認します。波高が大きい場合は、「analog gain」を「×1」にするか、印加高圧を下げるなどして、本装置への入力信号の振幅を下げて ください。

計測したデータは、メニュー「File」-「save wave」にて保存できます。

(3) エネルギースペクトル計測

スペクトルの計測を行う場合、「config」タブにて以下の設定をした後、メニュー「Config」をク リックします。波形計測にて控えておいた「threshold」値を、「config」タブ内「threshold」 に設定します。

図 15 Config タブ

「spectrum」タブを開き、下図の設定を確認した後、メニュー「Clear」→「Start」の順にクリックします。実行後以下のスペクトルが表示されます。

図 16 エネルギースペクトル計測環境

以下の点を注意します。

- ・「spectrum on/off」のCH1 をチェックし、CH1 のスペクトルを表示できるようにします。
- ・ ピークの解析を行う場合は、ROIを設定します。詳細は「5.5.spectrum タブ」を参照く ださい。

計測したデータは、メニュー「File」-「save histogram」にて保存できます。

計測を終了する場合は、メニュー「Stop」をクリックします。

- 6.2. dump モードでのメモリダンプ及びメモリ読み出し計測
- (1) 環境

図 17 エネルギースペクトル計測環境

- ・ 全ての機器(VME ラック、HV(高圧電源)、PC)が OFF であることを確認します。
- ・ 検出器とHVをSHVコネクタのケーブルで接続します。
- 検出器からのアノード出力信号をAPV8102-14MWPSAGbのCH1にLEMOコネクタ同 軸ケーブルで接続します。BNCコネクタの場合は、BNC-LEMO変換アダプタをご使用ください。
- ・ 本装置と PC を LAN ケーブルで接続します。
- ・ VME ラックの電源を ON にします。
- ・ PC の電源を ON にします。本アプリを起動します。
- ・ 高圧電源を ON にし、検出器に応じた電圧を印加します。
- この例では¹³⁷Cs 線源を使用しています。

(2) 入力波形の確認

前述「6.1. histo モードでのエネルギースペクトル計測(2)波形計測」同様の確認をします。

(3) エネルギースペクトルの確認

前述「6.1. histo モードでのエネルギースペクトル計測(3) エネルギースペクトル計測」同様の確認をします。

特に、本アプリにおける以下の点を注意します。

「output rate(cps)」: 1 秒間に所得するイベント数であり、想定に対して低過ぎたり、高 過ぎたりしていないか(次ページ図内①)を確認します。dump モ ードでは 1 イベント毎に 144Byte のデータを所得するため、例と して「output rate(cps)」が 1Mcps の場合、1 秒間に 144MB/ 秒(1Mcps×144Byte)のデータをメモリへ保存することになり ます。

「spectrum」タブ : スペクトルの形状に異常はないか、特にノイズデータを過剰に所得 していないか(次ページ図内②)を確認します。

図 18 dump モード計測前注意点

(4) dump計測

dump 計測を開始します。「config」タブ内「mode」を「dump」に設定します。

input count output count input rate(cps) output rate(cps) input rate(cps) output (%) immet use(%)	input count output count input rate(cp) output rate(cp) input rate(cp) input rate(cp) output rate(cp) input rate(cp) output rate(cp) input rate(cp)	ce L	Dev1 🗸	IP add	ress 192.1	68.10.16	memo									nem-IDLE	calib,	acq,	save	error	mode	dump
1 144.55k 144.38k 1.62k 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0	144.55k 144.38k 1.62k 0.03 0.000 0.00 </th <th></th> <th>input count</th> <th>output count</th> <th>input rate(cps)</th> <th>output rate(cps)</th> <th>deadtime (%)</th> <th>memory used(%</th> <th>(ROI No.</th> <th>pea (ch</th> <th>k centroid) (ch)</th> <th>peak (count)</th> <th>gross (count)</th> <th>gross (cps)</th> <th>net (count)</th> <th>net (cps)</th> <th>FWHM (ch)</th> <th>FWHM (%)</th> <th>FWHM (keV)</th> <th>FWTM (keV)</th> <th>measurement mode</th> <th>real time</th>		input count	output count	input rate(cps)	output rate(cps)	deadtime (%)	memory used(%	(ROI No.	pea (ch	k centroid) (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)	measurement mode	real time
NO0 UO0	NO0 NO NO< NO< NO< N	-	144.55k	144.38k	1.62k	1.62k	0.03	0.00	ROI	1: 98	99.02	2.946k	89.519k	994.656	67.537k	750.411	25.8	26.033	7.810	14.662	measuremen time	24:00:0
ROLE: 0 0.00 0.00	R014: 0 0.000 0.0		0.00	0.00	0.00	0.00	0.00	0.00	ROL	2:231/ 3: 0	0.00	0.000	193.666k	0.000	0.000	0.000	0.0	4.449 0.000	0.000	0.000	real time	00:01:3
RO16: 0 0.000 0.0	ROIG: 0 0.000 0.0								ROI	4: 0 5: 0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	live time	00:01:3
NO.7 · 0 0 0.00 0.000 0	NO.7. 0 0.00 0.00								ROI	6: 0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	dump size (byte)	1
3 file wave spectrum dump 4 file wave spectrum dump 5 file wave spectrum dump 6 signal type polarity metager file timesprate QDC QDC <t< td=""><td>a file wave spectrum dump a file wave spectrum dump a gain offsat matcreare threadore file file file file gain file file<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ROI</td><td>/: 0 B: 0</td><td>0.00</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>file size (byte)</td><td></td></td></t<>	a file wave spectrum dump a file wave spectrum dump a gain offsat matcreare threadore file file file file gain file file </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ROI</td> <td>/: 0 B: 0</td> <td>0.00</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.0</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>file size (byte)</td> <td></td>								ROI	/: 0 B: 0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	file size (byte)	
	measurement time(sec) 24:00:00 中	:	nomal mode dump measurment real time	mode	neg 🧹	x3 🔽 0	.0 \$ 8	5μ 🔽	100	CFD 🗸	x0.21 🗸	10ns 😠	20 🗣	peak 🔪	0ns 🗸	10ns 📈	80 😽	1/1	/ 1	8191	 1 ↓ mem_trigge 1 ↓ 1 ↓ 	10

ce Dev1 V IP address 192.168.10.16 memo	ROI							nem-IDLE	calb,	acq,	save	error	mode	dump
input output input output deadtime m count count rate(cps) rate(cps) (%) us	nemory ROI ised(%) No.	peak o (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)	measurement mode	real time
[:] 144.55k 144.38k 1.62k 1.62k 0.03	0.00 ROI1 :	98	99.02	2.946k	89.519k	994.656	67.537k	750.411	25.8	26.033	7.810	14.662	measuremen time	24:00:0
· 0.00 0.00 0.00 0.00 0.00	0.00 ROI2 : 23 ROI3 :	317 2: 0	309.53 0.00	1.837k	193.666k 0.000	2.152k	0.000	2.088k	97.2	4.449 0.000	29.453	58.135 0.000	real time	00:01:30
	ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	live time	00:01:3
	ROIS : ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	dump size	1
	RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	(byte) file size	
	ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000	(byte)	
sogram save] stogram continuous save]			du V du C:	imp save] imp file path :¥Data¥dum	pbin									
stogram save stogram file path iteDatabilisto_csv			du Ci	imp save imp file path :¥Data¥dum imp file num	p_,bin iber file r	ame								
istogram save			du du C: du o	imp save] imp file path :¥Data¥dum imp file num	p_,bin ber file r	ame								
togram save togram (fle path HDgram file path HDgram file save time(sec)) fell			du du C: du 0	imp save] imp file path i#Data¥dum imp file num [�]	p_,bin ber file r	ame								
dogram save] dogram continuous save] dogram file path #Detabhisto_csv fogram file save time(sec) }			du du C: du 0	imp save] imp file path imp file num imp file num	p_ibin ber file n	ame								
togram save togram continuous save togram file path togram file save time(sec)			du du C: du 0	imp save] imp file path i%Data¥dum imp file num [�]	p_,bin ber file r	iame								
dogram save dogram continuous save dogram file path #Datashisto_cov			du du C: du	imp save #D file path #O ata¥dum imp file num \$	p_,bin	ame								

図 20 file タブ内 dump データ保存関連設定

「dump save」	: チェック
「dump file path」	: 基準となるファイルパス
「dump file number」	: 0 から 999999 までで任意。重複しないように注意してください。

メニュー「Config」→「Clear」→「Start」の順にクリックします。実行後、「memory used(%)」が増加します。「memory used(%)」が100%に到達すれば dump モードは終了します。

図 21 dump データ計測画面

(5) メモリ読み出し

メニュー内の"Memory"- "CH1_Read"を実行するとメモリの読出とファイルの保存が開始され、"mem-LED"が"mem-IDLE"から"mem-READ"に変わり、メモリのダンプ量(dump size/file size)が増加します。

 ※ 読出メモリデータは基板初期化シーケンスにて 16Byte ごとのインクリメントデータが書き込まれているため、以下のようなバイナリーデータが読出せます。512MByte 付近で2 個目のメモリに切り替わるため、読出しデータが 01FF_FFFD⇒0 に戻ります。
 (144Byte/event の dump データのため、各メモリの最大使用量は 536,870,880Byte)

	ADDRESS	00	01	02	03	04	05	06	07	08	09	0A	0B	00	0D	0E	0F	0123456789ABCDEF
	00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	01	-
	00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	02	
	00000030	ŇŇ	ŇŇ	ŇŇ	ŇŇ	ŇŇ	ňň	ňň	ñň	ñň	ŇŇ	ŇŇ	ňŇ	ñň	ñň	ñň	ň3	
	00000040	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňž.	
	00000050	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	05	
	00000000	nň	ňň	ňň	ňň	ňň	ňň	ññ	ñň	ññ.	ňň	ňň	ňň	ññ	ññ	ňň	ñě.	
	000000000	00	00	00	00	ňň	00	00	00	00	ňň	ňň	00	00	00	00	07	
	00000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	07	
	16666590	υu	υu	υu	UU	UU	UU	UU	υu	υu	υu	UU	UU	UI	rr	FF	гэ	
	1FFFFFA0	00	00	00	00	00	00	00	00	00	00	00	00	01	H-	FF	FA	
	1FFFFFB0	00	00	00	00	00	00	00	00	00	00	00	00	01	H-	++	FB	
	1FFFFC0	00	00	00	00	00	00	00	00	00	00	00	00	01	H	H	FC	
	IFFFFFUU	UU	UU	UU.	UU.	UU	UU	UU	UU	UU.	UU	UU	UU	UI	++	++	FU	
	1FFFFFEU	00	UU	UU.	<u>00</u>	00	00	00	<u>UU</u>	ÛŬ.	00	00	00	00	00	00	00	<u>.</u>
	1FFFFF0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	01	
	20000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	02	
B	20000010	UU	00	00	UU.	00	00	00	00	UU	00	00	00	00	00	00	03	
	20000020	UU	UU	UU.	UU.	UU	UU	UU	UU	UU.	UU	UU	UU	00	00	UU	04	
		00	00	~~~					00	00		~~~			00	00	AL.	
	จกกกรงบ	ŲŲ	ŲŲ	ŲŲ	UŲ	υv	υv	ŲŲ	ŲŲ	ŲŲ	υv	υv	υv	٧I	ΓГ	ΓГ	гU	
	3FFFFF40	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	F6	
	3FFFFF50	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	F7	
	3FFFFF6 <u>0</u>	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	F8	
	3FFFFF70	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	F9	
	3FFFFF80	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FA	
	3FFFFF90	ÓŐ	ÓŐ	ÓŌ.	ÓŌ.	ÓŌ.	ÔŌ.	ÓŎ	ÓŌ.	ÓŌ.	00	00	00	01	FF	FF	FB	
	3FFFFF AD	ñň	ñň	ñň	ñň	ñň	ñň	ñň	ñň	ñň	ñň	ñň	nň	01	FF	FF	FC	
	3EEEEEBO	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňi	FF	FF	FD	

dump size(byte)と file size (byte)が一致し、1,073,741,760Byte(←536,870,880×2 個分) で画面内の mem LED が" mem-IDLE" になれば正常終了(ご使用の環境にてその読出速度で実行 可能)となります。

※画面内の mem LED が" mem-Read"のままで size(byte)、file size(byte)の更新が 10 秒以上行われない場合は読出失敗(ご使用の環境にてその読出速度は実行不可)と判断で きます。その場合は、" Memory" - "Stop Read Memory"を実行し、読出を手動で終 了させます。(mem LED は" mem-IDLE" に戻ります)

7. ファイル

7.1. ヒストグラムデータファイル

- (1)ファイル形式カンマ区切りの CSV テキスト形式
- (2) ファイル名

任意

(3)構成

「Header」部と「Calculation」部と「Status」部と「Data」部からなります

・Header(ヘッダー)部

Measurement mode	:	計測モード。
Measurement time	:	計測設定時間。単位は秒
Real time	:	リアルタイム。単位は秒
Start Time	:	計測開始時刻
End Time	:	計測終了時刻
※以下 CH 毎に保存	Ξ	
POL	:	極性
TGE	:	波形表示トリガーCH
TGC	:	波形取得極性
RJT	:	波形取得スレッショルド
CCF	:	CFD ファンクション
CDL	:	CFD ディレイ
CWK	:	CFD walk
CTH	:	CFD スレッショルド
FLK	:	ベースライン時定数
PTS	:	QDC プリトリガー
LIG	:	QDC フィルター時定数
LIT	:	QDC サム or ピーク
AFS	:	QDC 積分縮小
CLD	:	QDC LLD
CUD	:	QDC ULD
TTY	:	タイミングタイプ
※以下単一に保存		
MOD	:	モード
MTM	:	計測時間
MEMO	:	メモ

• Calculation (計算) 部

※以下 ROI 毎に保存

ROI_ch	:	ROIの対象となった入力チャンネル番号。
ROI_start	:	ROI開始位置(ch)
ROI_end	:	ROI終了位置(ch)
Enegy(keV)	:	ROI 設定のエネルギー(keV)
peak(ch)	:	ROI間のピーク位置(ch)
centroid(ch)	:	ROI間の中心位置(ch)
peak(count)	:	ROI 間のピーク c h カウント
gross(count)	:	ROI間のカウント数の総和
gross(cps)	:	ROI 間のカウント数の cps
net(count)	:	ROI間のバックグラウンドを差し引いたカウント数の総和
net(cps)	:	ROI 間のバックグラウンドを差し引いたカウント数の総和の cps
FWHM(ch)	:	ROI間の半値幅(ch)
FWHM(%)	:	ROI 間の分解能(%)
FWHM(keV)	:	ROI間の半値幅(keV)
FWTM(keV)	:	ROI間の全値幅(keV)

・Status(ステータス)部

※以下 CH 母に保仔	-	
input count	:	インプットカウント
input rate(cps)	:	インプットカウントレート
outtput count	:	アウトプットカウント
outtput rate(cps)	:	アウトプットカウントレート
dead time(%)	:	デットタイム比

・Data(データ)部

チャンネル毎のヒストグラムデータ。最大8192点。

7.2. 波形データファイル

- (1)ファイル形式カンマ区切りの CSV テキスト形式
- (2) ファイル名任意
- (3)構成

「Header」部と「Calculation」部と「Status」部と「Data」部からなります

•Header(ヘッダ-	-)	部
Measurement mode	:	計測モード。
Measurement time	:	計測設定時間。単位は秒
Real time	:	リアルタイム
Start Time	:	計測開始時刻
End Time	:	計測終了時刻
※以下 CH 毎に保存		
POL	:	極性
TGE	:	波形表示トリガーCH
TGC	:	波形取得極性
RJT	:	波形取得スレッショルド
CCF	:	CFD ファンクション
CDL	:	CFD ディレイ
CWK	:	CFD walk
CTH	:	CFD スレッショルド
FLK	:	ベースライン時定数
PTS	:	QDC プリトリガー
LIG	:	QDC フィルター時定数
LIT	:	QDC サム or ピーク
AFS	:	QDC 積分縮小
CLD	:	QDC LLD
CUD	:	QDC ULD
TTY	:	タイミングタイプ
※CH 毎はここまで		
MOD	:	モード
MTM	:	計測時間
MEMO	:	メモ
・Status(ステータ	ス) 音】
※以下 CH 毎に保存		
		·· · · · · ·

input count	:	インプットカウント
input rate(cps)	:	インプットカウントレート
outtput count	:	アウトプットカウント
outtput rate(cps)	:	アウトプットカウントレート
dead time(%)	:	デットタイム比

・Data(データ)部

表示中 device の波形データ

7.3. dump データファイル

(1) ファイル形式

バイナリ、ビッグエンディアン(ネットワークバイトオーダー)形式、MSB First (2) 構成

144Byte/イベント

1イベント分(128+16)Byte

【1 イベントあたりファイル内データ】

14bitADC のオフセットバイナリデータを16bit 化(上位2bitは0)してDATAとし、 DATA64 点(1ns 間隔,128Byte) + LIST(解析データ, 16Byte) = 144Byte

【DATA(14bitADC データ(2Byte)x64 点)】

	15	14	13 0
	0	0	オフセットバイナリ ADC[130]
	Ē	11日1月1日	V)換算: V[V] = (ADC[13.0] - 8192) / (8192 x G) ※G はアナログゲインの設定値(1or3)
7 1	гот	-/舟刀士曰	

LLISI(脌朳フ ・タ(16Byte, 128bit))】

127					112
		OxO	000		
111					96
		TOTAL	_[150]		
95					80
		FALL	[150]		
79					64
		TDC[5	5540]		
63					48
		TDC[3	3924]		
47					36
		TDC[238]		
31		24	23		16
	TDC[70]			TDCFP[70]	
15 13	12				0
CH[20]			QDC [120]		

Bit127からBit112 予備(OxOOOO) •

・ Bit12からBit0

- TOTAL 値。符号無16ビット整数。算出範囲次ページ参照。 Bit111からBit96 •
- Bit95 から Bit80 FALL 値。符号無16ビット整数。算出範囲次ページ参照。 •
 - Bit79からBit24 1Bit あたり 1ns。 TDC カウント。56bit。
- TDCFP(小数部)カウント。8bit。1bit あたり 3.9062ps。 Bit23からBit16 • サンプリングポイント間の内挿(1ns ÷ 256 = 3.9062 ps)
- Bit15からBit13 [15.14]基板の識別用(必要な場合に使用)。 CH₂ • [13]0:CH0, 1:CH1

※[15..14]のデータは基板上の RSW2 にて 0~3 で変更可能 QDC 積分値。符号無 13 ビット整数。

上図:TOTAL 値算出範囲、下図:FALL 値算出範囲

8. 終了

メニュー「File」-「quit」をクリックします。クリック後、本アプリは終了し、画面が消えます。 次回起動時は、終了時の設定が反映されます。

9. その他

9.1. DPP 初期設定に失敗した場合

本装置との接続に失敗した場合、主な原因は以下の通りです。

- ・ PC 側のネットワーク設定が DHCP になっている。
- PC 側 NIC の IP アドレスが、プライベートアドレス(192.168.129 から 192.168.10.134 を除く 192.168.10.2 から 255)で設定されていない。
- ・ PC の省電力モードが有効になっている。
- ・ UDP で使用するポート番号 4660 番及び TCP/IP で使用する 24 番が定義されていない。
- ・ 不明の原因。ケーブルの接続などの確認後、再起動をお願いします。
- ・ PC 側の LAN ケーブルの差し込みが不足している。
- ・ 本装置側の LAN ケーブルの差し込みが不足している。
- ・ 本装置の電源が OFF のまま、もしくは、LAN ケーブルの断線。

9.2. データ読み込みに失敗した場合

- ・ UDP ではなく TCP/IP(ポート番号 24番)で、指定バイト数読み込みをする。
- ・電源投入時や前回通信した際にデータ受信バッファに何らかのデータが存在している場合は、
 そのデータから受信をしてしまうため、本来必要なデータの前に不要なデータが入ってしまう
 場合があります。このような場合は、読み込みチャンネル番号を設定する前に 32768Byte 程度を数回空読み(受信バッファのクリア)を実行することを推奨いたします。

9.3. 外部入力(10MHz クロック) 使用方法

- (1) VME ラックの電源を OFF にします。
- (2) 基板に接続しているケーブル類等を外し、VME ラックから基板を取外します。
- (3) APV8102-14MWPSAGb 基板上の下記ジャンパーポスト JP17をINT-CK(3-4 ショ ート)から EXT-CK(2-5 ショート)に切替えます。

写真 2 左側:内部クロック使用時、右側:外部クロック使用時

- (4) VME ラックに基板をセットします。
- (5) 基板にイーサネットケーブルを接続します。PC が立ち上がっていることや Hub 等への接続もご確認ください。
- (6) フロントパネルの CLK-I 端子に 10MHz クロック信号(Duty:50%±2%, L:0~
 0.8V/H:2.5~5V)を入力し、VME ラックの電源を ON にします。
- (7) 30 秒~1 分度待ち、基板の暖気+初期化シーケンス完了(完了時のパネル LED:緑のみ点灯)及び基板のイーサネットが PC とリンクアップ(ping 等が通る状態)出来たらアプリケーションを起動します。
- (8) アプリケーションより従来どおり(内部クロック動作時と同様)の操作が可能になります。
 - ※ 本基板(供給先)だけでなく外部クロック供給元にも配慮した十分な保護回路は入っておりま すが、供給先・供給元に意図しない障害が発生する可能性がありますので、基板(ラック)電 源 OFF 時の外部クロック供給は無しもしくは極力短時間にしてください。
 - ※ 外部クロック動作時に手順⑦にて2分以上待っても初期化シーケンスが完了しないもしく は初期化シーケンスが開始されない(LED が一度も点灯しない)場合は供給している外部ク ロックの確認を行ってください。パネルのCLK-O 端子から CLK-I⇒3.3V レベルにバッ ファリングされたクロック(基板内で使用しているクロックと同等)が常時出力されています のでオシロスコープなどで供給クロックの品質(周波数やDuty 比など)を確認することがで きます。CLK-O 出力波形を正しく観測するためにはケーブル長によってはオシロスコー プ側を 50Ω終端した方が良い場合があります。
 - ※ 内部クロック動作に戻す場合はアプリケーション終了後、VME ラックの電源を OFF、基板に接続しているケーブル類等を外し、ラックから基板を取外した後、JP17を INT-CK(3-4 ショート)に切替えてください。

9.4. メモリ読込速度の切り替え及び動作確認方法

ご使用可能な読込速度の上限はお使いの PC 及びネットワーク環境に依存するため、読込速度切り 替え機能を基板側に設けております。数十 MB/s オーダーでのデータダンプになりますので、出来 るだけ他のアプリケーションの使用は控え、極力 PC のリソースが本アプリで使用できる状態での 読込速度の確認を行ってください。ファイルの保存先(ストレージ)には PC 内蔵 SSD、ギガビット 対応のイーサネットアダプタには PC 内蔵 or PCle タイプを推奨致します。メモリの安定した高速 読込に対しては USB 等による外付けストレージ、USB-Ethernet 変換アダプタのご使用は推奨致 しません。

本装置基板上の下記ロータリースイッチ RSW3 を切り替えることでメモリの読込速度が変更できます。ロータリースイッチ RSW3 の指示値は矢印の値(下図の場合 2)になります。

※ RSW3 切り替え作業は基板を VME ラックから取り外している時にのみ実施してください。

※ 読込速度の確認は内部クロック・外部クロックどちらのモードでも実施可能です。

写真 3 メモリの読込速度切り替え RSW3 及び設定における転送レート対応表

- (1) VME ラックの電源を OFF にします。
- (1) 本装置に接続しているケーブル類等を外し、VME ラックから本装置を取り外します。
- (2) 基板上 RSW3 を上記転送レート対応表を参考にマイナスドライバー等で切り替えます。
- (3) VME ラックに基板を取り付けます。
- (4) 基板にイーサネットケーブルを接続します。PC が起動していることや SW Hub 等への接続もご確認ください。
- (5) VME ラックの電源を ON にします。30 秒~1 分度待ち、基板の暖気+初期化シーケンス 完了(完了時のパネル LED:緑のみ点灯)及び基板のイーサネットが PC とリンクアップ (ping 等が通る状態)出来たらアプリケーションを起動します。

- (6) 本アプリ起動後、cofig タブ内の"mode"を"dump"に設定します。
 (6) 本アプリ起動後、cofig タブ内の"mode"を"dump"に設定します。
- (7) file タブ内の" dump save"を" ON(チェックを入れる)"に設定し、" dump file path"にファイルの保存先とファイル名を入力します。

1 🔤

dump file path C:&Temp¥testbin
C:#Temp#testbin
0 0

(8) メニュー内の" Config"を実行し、設定情報を基板に送ります。

Digital	Pulse Proce	ssor APV8102-1	4MWPSAGb	2CH 1G-/	ADC+1GM	EM Ver	2.1.0										
File Ed	t Config	Clear Start	Stop	Memory													
device	Dev1 💌	IP address 192.1	68.10.130	memo		ROI				in	em-IDLE	calib,	acq,	save	error	mode	dump

 (9) dump モードを実行します。メニュー「Config」→「Clear」→「Start」の順にクリックします。実行後、「memory used(%)」が増加します。「memory used(%)」が100%に 到達すれば dump モードは終了します。 (10) メニュー内の"Memory" - "CH1_Read"を実行するとメモリの読出とファイルの保存 が開始され、"mem-LED"が"mem-IDLE"から"mem-READ"に変わり、メモリの ダンプ量(dump size/file size)が増加します。

evice D	et 🖃	ID add	192 1	58 10 130	Stop R	ead Memor	γ						mm.10	E	200	(2)10			1.12
н		1, 000	13411	10.10.150	All enal	ole CH -Rei	ad						Internation of the local data	LE CENC	and.		error.	mode	aump
H D.	input count	count	input rate(cps)	output rate(cps)	CH1-Re	ad		peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	FWHM (ch)	FWHM (%)	FWHM	FWTM	measurement mode	real time
1 :	0.00	0.00	0.00	0.00	CH2-Re	ad	_	0	0.00	0.000	0.000	0.000	0.000	0 0.0	NaN	0.000	0.000	measuremen	01:00:00
z :	0.00	0.00	0.00	0.00	All Fran	o/Zoro fill		0	0.00	0.000	0.000	0.000	0.000	D 0.0	NaN	0.000	0.000	real time	00.00.00
					All Erac	e(zero-mi)	(nt)	0	0.00	0.000	0.000	0.000	0.000	0.0	NaN	0.000	0.000		00:00:00
					Frase(2	re(increme ?em-fill)	ancy	0	0.00	0.000	0.000	0.000	0.000	0 0.0	NaN	0.000	0.000	live time	00:00:0
					Erase(1	ncrement)		0	0.00	0.000	0.000	0.000	0.000	0 0.0	NaN	0.000	0.000	dump size	
					areas (ROI7 .	0	0.00	0.000	0.000	0.000	0.000	0.0	NaN	0.000	0.000	(Dyte)	
							ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.0	NaN	0.000	0.000	(byte)	
gital I	Pulse Proce	essor AP	V8102-14	MWPSAGb	2CH 1G-	ADC+1GM	EM Ver	2.1.0							>				
gital I Edit	Pulse Proce	essor AF	V8102-14 Start	MWPSAGb Stop	2CH 1G- Memory	ADC+1GM	EM Ver	2.1.0							>				
gital I Edit	Pulse Proce Confi	essor AF ig Clear IP adde	V8102-14 Start	MWPSAGb Stop 58.10.130	2CH 1G Memory	ADC+1GM	EM Ver	2.1.0					merr-RE	D calb.	acq.	save	error	mode	
gital I Edit ce D	Pulse Proce Confi ev1 v input count	essor AP ig Clear IP addi output count	V8102-14 Start Input rate(cps)	MWPSAGb Stop 58.10.130	2CH 1G- Memory memo deadtime (%)	ADC+1GM	EM Ver	2.1.0	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count) (co	D calb. : FWHM	BWHM (%)	save	error	mode measurement mode	
gital I Edit ce D	Pulse Proce Confi ev1 v input count 0.00	ig Clear IP addi output count 0.00	V8102-14 Start I92.10 input rate(cps) 0.00	MWPSAGb Stop 68.10.130 output rate(cps) 0.00	2CH 1G- Memory memo deadtime (%)	ADC+1GM memory used(%) 0.04	EM Ver	2.1.0 peak (ch) 0	centroid (ch) 0.00	peak (count) 0.000	gross (count) 0.000	gross (cps) 0.000	mem-RE net ni (count) (cp 0.000 0.4	D calb. PWHM (ch) 00 0.0	Scq. FWHM (%) NaN	Save FWHM 0.000	error FWTM 0.000	mode measurement measure	
gital I Edit ice D	Pulse Proce Confi ev1 input count 0.00 0.00	ig Clear IP addi output count 0.00 0.00	V8102-14 Start input rate(cps) 0.00 0.00	MWPSAGb Stop 58.10.130 output rate(cps) 0.00 0.00	2CH 1G- Memory memo deadtime (%) 0.00 0.00	ADC+1GM memory used(%) 0.04 0.00	ROI ROI No. ROI1 : ROI2 :	2.1.0 peak (ch) 0 0	centroid (ch) 0.00 0.00	peak (count) 0.000 0.000	gross (count) 0.000 0.000	gross (cps) 0.000 0.000	mem-RE reating (read) 0.000 0.4 0.000 0.4	D calb. : FWHM :) (ch) 00 0.0 00 0.0	FWHM (%) NaN NaN	53VE FWHM 0.000 0.000	error FWTM 0.000 0.000	mode measurement mode measure time	
gital I Edit ce D	Pulse Proce	ig Clear IP addi output count 0.00 0.00	V8102-14 Start I92.10 input rete(cps) 0.00 0.00	MWPSAGb Stop s8.10.130 output rete(cps) 0.00 0.00	2CH 1G- Memory memo deadtime (%) 0.00 0.00	ADC+1GM memory used(%) 0.04 0.00	EM Ver	2.1.0 peak (ch) 0 0	centroid (ch) 0.00 0.00 0.00	peak (count) 0.000 0.000 0.000	gross (count) 0.000 0.000 0.000	gross (cps) 0.000 0.000 0.000	mem.RE nett nr 0.000 0.4 0.000 0.4 0.000 0.4	D calbi ; PWHM ;) (ch) 00 0.0 00 0.0	FWHM (%) NaN NaN NaN	53VE FWHM 0.000 0.000 0.000	error FWTM 0.000 0.000 0.000	mode measurement mode measure time real time	e
gital I Edit ice D	Pulse Proce	essor AF ig Clear IP addi output count 0.00 0.00	V8102-14 Start input rete(cps) 0.00 0.00	MWPSAGb Stop 88.10.130 output rate(cps) 0.00 0.00	2CH 1G- Memory 	ADC+1GM memory used(%) 0.04 0.00	EM Ver ROI ROI ROI1 : ROI2 : ROI3 : ROI3 :	2.1.0 peak (ch) 0 0 0	centroid (ch) 0.00 0.00 0.00 0.00	peak (count) 0.000 0.000 0.000	gross (count) 0.000 0.000 0.000 0.000	gross (cps) 0.000 0.000 0.000	net (count) (cc 0.000 0.4 0.000 0.4 0.000 0.4 0.000 0.4	0 calb. : FWHM :) (ch) 00 0.0 00 0.0 00 0.0 00 0.0	PWHM (%) Nall Nall Nall Nall Nall	52V6 FWHM 0.000 0.000 0.000 0.000	error FWTM 0.000 0.000 0.000 0.000	mode messurement mode real time Ilve time	001-001
gital I Edit ice D	Pulse Proce Confi ev1 v input count 0.00 0.00	ig Clear IP addi output count 0.00 0.00	V8102-14 Start I92.11 input rete(cps) 0.00 0.00	MWPSAGb Stop i8.10.130 output rate(cps) 0.00 0.00	2CH 1G- Memory memo deadtime (%) 0.00 0.00	ADC+1GM memory used(%) 0.04 0.00	R01 - R01 - R01 - R01 - R013 - R014 - R013 - R014 - R014 - R015 - R015 - R015 - R015 - R016 -	2.1.0 peak (ch) 0 0 0 0	centroid (ch) 0.00 0.00 0.00 0.00	peak (count) 0.000 0.000 0.000 0.000 0.000	gross (count) 0.000 0.000 0.000 0.000 0.000	gross (cpi) 0.000 0.000 0.000 0.000 0.000	met (count) (cc (cc (cc (cc (cc (cc (cc (cc (cc (c	D callb: : FWHM :) (ch) 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0	Scq. FWHM (%) NaN NaN NaN NaN NaN NaN NaN	53VE FWHM 0.000 0.000 0.000 0.000 0.000	error FWTM 0.000 0.000 0.000 0.000 0.000	mode measurement mode measure time real time ive time dump size	00:70:00
gital I Edit ice D	Pulse Proce Confi ev1 v input count 0.00 0.00	IP addi output count 0.00 0.00	V8102-14 Start I92.14 rets 192.14 rets(cps) 0.00 0.00	MWPSAGb Stop s8.10.130 output rate(cps) 0.00 0.00	2CH 1G- Memory memo deadtime (%) 0.00 0.00	ADC+1GM memory used(%) 0.04 0.00	ROI -	2.1.0 peak (ch) 0 0 0 0 0 0 0 0	centroid (ch) 0.00 0.00 0.00 0.00 0.00 0.00	peak (count) 0.000 0.000 0.000 0.000 0.000 0.000	gross (count) 0.000 0.000 0.000 0.000 0.000 0.000	gross (cps) 0.000 0.000 0.000 0.000 0.000 0.000	nem-RE (count) (count) 0.000 0.4 0.000 0.4 0.000 0.4 0.000 0.4 0.000 0.4 0.000 0.4	0 calb. 5 FWHM 5) (ch) 00 0.0 00 0	FWHM (%) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	53VC FWHM 0.000 0.000 0.000 0.000 0.000 0.000	error FWTM 0.000 0.000 0.000 0.000 0.000 0.000	mode measurement mode measure time real time live time dump size (byte)	00:00:00

 ※ 読出メモリデータは基板初期化シーケンスにて16Byte ごとのインクリメントデータが書き込まれているため、以下のようなバイナリーデータが読出せます。512MByte 付近で2 個目のメモリに切り替わるため、読出しデータが01FF_FFFD⇒0 に戻ります。
 (144Byte/event の dump データのため、各メモリの最大使用量は536,870,880Byte)

ADDRESS	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	0123456789ABCDEF
00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	<u>.</u>
00000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	01	
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	02	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	03	•••••
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	04	
000000000	ňň	ňň	ñň	ñň	ňň	ňň	ňň	ňň	ňň	ññ	ñň	ñň	ññ.	ññ	ňň	06 06	
00000070	ŎŎ	00	ŏŏ	00	ŎŎ.	07											
00000000	nn	nn	nn	nn	nn	ññ	ññ	ññ	nn	ΩΩ							
IFFFFF90	UU	UU	UU	UU	UU	UU	ŲŲ	VU	υu	υu	UU	UU	VI	FF	FF	гэ	
1FFFFFA0	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FA	
1FFFFFB0	00	00	00	00	00	00	00	00	00	00	00	00	01	FF.	EF-	FB	•••••
1EEEEED0	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FU	•••••
1FFFFFF0	ňň	ňň	ňň	ññ	ñň	ññ	ññ	ňň	ňň	ññ	ññ	ñň	ňň	'n	nn	nñ	
1FFFFFF0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	01	<u>_</u>
20000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	02	
20000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	03	
20000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	04	
3FFFFF30 2EEEEE40	00	00	00	00	00	00	00	00	00	00	00	00	01			E0	
3FFFFF50	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	F7	
3EEEEE60	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňň	ňi	FF	FF	F8	
3FFFFF70	ŏŏ.	ŏŏ.	ŏŏ.	ŏŏ	ŏŏ.	ŎŎ.	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ŏi	FF	FF	F9	
3FFFFF80	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FĂ	
3FFFFF90	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FB	
3FFFFFA0	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FC	
_3FFFFFB0	00	00	00	00	00	00	00	00	00	00	00	00	01	FF	FF	FD	

(11) 読出にかかる時間は読出速度(RSW3 の設定)やご使用の PC 環境に依存しますが、dump size(byte)と file size (byte)が一致し、1,073,741,760Byte(←536,870,880×2 個分)で画面内の mem LED が" mem-IDLE"になれば正常終了(ご使用の環境にてその読出 速度で実行可能)となります。

※画面内の mem LED が" mem-Read"のままで size(byte)、file size(byte)の更新が 10 秒以上行われない場合は読出失敗(ご使用の環境にてその読出速度は実行不可)と判断で きます。その場合は、" Memory" - "Stop Read Memory"を実行し、読出を手動で終 了させます。(mem LED は" mem-IDLE" に戻ります)

(12)読込が正常終了した場合でも数回は同じ読込速度で実施し、安定した読込動作をしている か確認をしてからご使用する読込速度を確定してください。読出速度の変更(RSW3の切 替)を行う場合は本アプリを終了し、手順(1)から行ってください。

上記手順は読出速度の確認/決定を効率良く行う場合に使用する手順です。ご使用の環境で読出速度 を決定(RSW3の値を固定)した後は、通常の手順(取扱説明書を参照)でご使用ください。

株式会社テクノエーピー

TEL.: 029-350-8011 FAX.: 029-352-9013 URL: http://www.techno-ap.com 住所:〒312-0012 茨城県ひたちなか市馬渡 2976-15

47 / 47