統合版アプリケーション

Tool 編

取扱説明書

第1.1.0版 2025年4月

株式会社 テクノエーピー	
〒312-0012 茨城県ひたちなか市馬渡2976-15	
TEL : 029-350-8011	
FAX : 029-352-9013	
URL : http://www.techno-ap.com	
e-mail : info@techno-ap.com	

1.	概要	۶ 	
2.	Too	ol 機能 gauss fit analysis	4
2.	1.	起動画面	5
2.	2.	オンラインの場合	7
2.	З.	オフラインの場合	
2.	4.	注意事項	
2.	5.	終了	
З.	Too	ol 機能 peak search analysis	
З.	1.	処理フロー	
З.	2.	ガウス型二階微分フィルタ	
З.	З.	ピーク関数の適合	
З.	4.	Covell 法で ROI 計算	
З.	5.	起動画面	
З.	6.	オンラインの場合	
З.	7.	オフラインの場合	
З.	8.	注意事項	
З.	9.	終了	
4.	Too	ol 機能 auto pole zero	
4.	1.	起動画面	
4.	2.	実行	
4.	З.	注意事項	
4.	4.	終了	
5.	Too	ol 機能 auto threshold	
5.	1.	起動画面	
5.	2.	実行	
5.	З.	注意事項	
5.	4.	終了	
6.	Too	ol 機能 create calibration file	
6.	1.	起動画面	
6.	2.	実行	
6.	З.	終了	

一目次一

1. 概要

本書は、弊社各機器対応の統合版アプリケーションのうち、共通 Tool 機能の取り扱いについて記載したものです。 機器毎の Tool 機能の搭載有無については、下表を参照ください。

機器	APU101	APU101X	APU504X	ADC7200	ADC7005	ADC7400
Tool機能	APN101	APN101X	APN504X	APG/300	APG/300	APG/400
gauss fit analysis	0	0	0	0	0	0
peak search analysis	0	0	0	0	0	0
auto pole zero	0	0				
auto threshold	0	0	0	_	_	
create calibration file	0	0	0	0	0	0

〇:搭載 -:非搭載

- ※ デジタルスペクトロメーターAPU101 等、各機器の取り扱い方法などについては、該当機器の取扱説明書をご参照ください。
- ※ 本書では、統合版アプリケーション起動時の画面を「メイン画面」と表記します。
- ※ 本書は、統合版アプリケーション Ver7.0.0 以降に対応しています。
- ※ 本書の記載内容は、予告なく変更することがあります。

2. Tool 機能 gauss fit analysis

本ツールは、ガウスフィッテングによるピーク解析を行うものです。

専用画面にて、計測中またはデータファイルのヒストグラムデータを対象に、カウント数の少ないピークや重なり合うピークを分けて、半値幅やカウント数などを算出することができます。

ガウスフィッテングは、バックグランドを考慮したガウス関数+1次式をモデル関数として使用します。

パラメータの初期値は、ROI で設定した範囲から自動的に算出します。ガウスフィッテングの非線形最小二乗法のア ルゴリズムは、最急降下法と Gauss-Newton 法のよいところを組み合わせることで、収束性が向上している Levenberg-Marquardt 法を採用しております。

$$f(x; A, \mu, \sigma, a, b) = Aexp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} + (ax+b)$$

Where:

A : amplitude , μ : center , σ : standard deviation a : slope , b : intercept

数式 1 ガウス関数+1次式

また、gross(count), net(count)の算出においては、Covell法を用いています。

gross(count) = Np $\sigma gross(count) = \sqrt{\beta l^2 \times Nl + \beta r^2 \times Nr}$ $\beta l = \frac{(R_1 + R_2 - L_0 - R_0)(R_0 - L_0 + 1)}{(L_1 - L_2 + 1)(R_1 + R_2 - L_2 - L_1)}$ $\beta r = \frac{(L_0 + R_0 - L_1 - L_2)(R_0 - L_0 + 1)}{(R_2 - R_1 + 1)(R_1 + R_2 - L_2 - L_1)}$ $\hat{\gamma} \gg \land D D \lor \land net(count), \quad \text{及び誤差 onet(count)} \oplus \text{計算}$ $net(count) = Np - \beta l \cdot Nl - \beta r \cdot Nr$

 $\sigma net(count) = \sqrt{Np + (\beta l^2 \times Nl + \beta r^2 \times Nr)}$

2.1. 起動画面

メニュー Tool - gauss fit analysis を実行します。実行後、下図の起動画面が表示されます。

図2 ガウスフィット起動画面

・メニュー部

File - open gauss fit fileガウスフィットファイル読み込み(後述の offline 時のみ有効)File - open histogram fileヒストグラムデータファイルの読み込み(後述の offline 時のみ有効)File - save gauss fit fileガウスフィットデータをファイルに保存File - save image画面を png 形式で保存File - close画面の終了Information情報画面を表示。ダイアログ画面で本画面を使用する際の注意事項などを表示

🔄 Information	\times
<cautions></cautions>	
 When setting the number of fit values to 2 or higher at combination type, set fit1 and fit2 in this order from the left in the gauss fit graph. 	
- In the gauss fit graph, make sure that the peak is not cut off at the both end.	
 If the centroid value in the calculation area and the peak value on the gauss fit graph do not match, move the X-axis range of the graph or the fit cursor to adjust. 	
- In 'gross(count)' column, errors are not displayed.	
 'File - open gauss fit file' function only displays the file contents; so you cannot recalculate by changing parameters in setting area or moving cursors in graph. 	
In order to reactivate those parameter changes or cursor moves, switch 'data soruce', execute 'File - open histogram file' or 'File -close'.	
language English Japanese close	

図3 information 画面

取扱説明書 Tool 編 • setting 部	
data source	解析対象データを選択します。
online	メイン画面で計測中のデータを対象とします。
offline	予め読み込んだヒストグラムデータファイルまたはガウスフィットデータファイル内のデータを
	対象とします。
target CH	解析対象CHの選択
display error	calculation 部の各種算出値について、誤差表示の OFF、sigma、2 sigma、3 sigma を切り
	替えます。
ROI(ch)	gauss fit グラフ内で表示する解析対象のデータ点数です。 256 または 512 チャンネルから選
	択します。
type of fit	フィッティングの種類を single, combination から選択します。
	通常は single を推奨しますが、ピークが近接しておりフィッティングし難い場合は、
	combination を選択します。
number of fit	ガウスフィット数の設定。一つのヒストグラムに対し、最大3つのピークに対してガウスフィッ
	ト解析を実行することが出来ます。
• calculation 部	
centroid fit	全カウントの総和から算出される中心値(ガウスフィッティングからの算出値)
gross(count) raw	カウントの総和(実データからの算出値)
net(count) raw	バックグラウンドを差し引いたカウントの総和(実データからの算出値)
net(cps) raw	同 1 秒当たりの値(実データからの算出値)
net(count) fit	バックグラウンドを差し引いたカウントの総和(ガウスフィッティングからの算出値)
net(cps) fit	同 1 秒当たりの値(ガウスフィッティングからの算出値)
FWHM fit	半值幅
※ cpsの算	浄出においては、カウントの総和をlive time で割っています。
i centroi	d と FWHM の単位は、online 時はメイン画面でのエネルギー校正状況に、

offline時は読込対象ファイルに格納されているエネルギー校正状況に、それぞれ従います。

以下の calibration *a から calibration unit も同様です。

calibration *a	エネルギー校正係数*a が表示されます。
calibration +b	エネルギー校正係数+b が表示されます。
calibration x^2*c	エネルギー校正係数 x^2*c が表示されます。
calibration unit	エネルギー校正時の単位が表示されます。

・ グラフ部

histogram グラフ histogram グラフ内 histogram プロットは、ガウスフィット対象のヒストグラムデータをグラ フ表示します。ROI プロットは gauss fit グラフで表示している部分であり、赤色で表示されま す。図4赤枠のボタンが押された状態で、ROI プロット中央の垂直青カーソルをドラッグするこ とで、ROI プロット位置を変更できます。 また、自動スケールが OFF の場合にグラフ左下の横スライドバーを左右に動かすと、表示点数 は一定のまま表示位置を変えることができます。

各チェックボックスのチェック有りはプロット表示、チェック無しはプロット非表示です。

取扱説明書 Tool 編 gauss fit グラフ

histogram グラフに表示されたヒストグラムデータから、gauss fit グラフのX軸の開始位置からROI(ch)で設定したチャネル分を抽出して表示します。fit1 から fit3 プロットは、各カーソルで設定したピークを対象にガウスフィットしたデータです。histogram プロットはガウスフィットした結果を連結したデータです。

グラフ右下の (表示のパン)ボタンを選択後、グラフ上をクリックしたままドラッグすると、 表示点数は一定のまま表示位置を変えることができます。

また、グラフ右下のカーソルのXは、ガウスフィット対象ピークに合わせるカーソルの位置であり、Xを直接入力することでカーソルを移動させることもできます。

各チェックボックスのチェック有りはプロット表示、チェック無しはプロット非表示です。

2. 2. オンラインの場合

計測中に取得したヒストグラムを対象に、下記の手順で指定ピークに対してガウスフィット解析を行います。

- (1) data source でonline を選択します。
- (2) ヒストグラムモードで計測を開始します。計測中のヒストグラムがhistogram グラフに表示されます。
- (3) gauss fit グラフでは、histogram グラフ内の着目部分のヒストグラムを表示します。このグラフの横軸範囲の 設定は、まず横軸オートスケールを解除し、gauss fit グラフ横軸の最小値を直接入力するか、グラフの X-ズ ーム機能を使用します。設定後、histogram グラフには gauss fit グラフで選択した範囲が赤色になります。
- (4) 解析対象のおおよそのピーク部分に、最大 3 本の垂直カーソルを設定します。カーソルの設定は下図赤枠のボ タンが押された状態で、赤色と青色と桃色の垂直カーソル線をそれぞれドラッグし、ピーク部分にドロップし ます。または、画面右下のカーソルの X 値に数値を入力することでカーソルを移動し設定することもできます。
- (5) calculation 部には、各ガウスフィットデータを元にした半値幅等の演算結果が表示されます。

図4 ガウスフィット画面(online時)

取扱説明書 Tool 編

2.3.オフラインの場合

ヒストグラムデータファイルまたはガウスフィットデータファイルを読み込むことで、取得したヒストグラムを対象に、 下記の手順で指定ピークに対してガウスフィット解析を行います。

- (1) data source でoffline を選択します。
- (2) メニュー File open gauss fit file または File open histogram file をクリックします。ファイル選択ダイ アログが表示されるので、読み込み対象のデータファイルを選択して開きます。データファイル内のヒストグ ラムが histogram グラフに表示されます。

以降の手順は、オンラインの場合と同様です。

図5 ガウスフィット画面 (offline 時)

なお、ガウスフィットデータファイルの読み込み時は、ファイルの保存内容を表示するだけの機能となり、setting 部のパラメータ変更や、グラフ上でのフィッティング位置変更に伴う再計算は行えません。

そのため、それらの部品に対する操作も無効となっています。有効に戻すには、以下のいずれかの操作を行ってください。

- ・data source にて、online に切り替える
- ・File open histogram file にて、ヒストグラムデータファイルを読み込む
- File close にて、ツール画面を一度閉じる

取扱説明書 Tool 編

2. 4. 注意事項

ガウスフィット画面において正常に動作させるために、下記の点にご注意ください。

- type of fit で combination を選択し、number of fit を 2 以上に設定する場合は、gauss fit グラフでは左から fit1、fit2の順で設定します。fit1 が正常に動作していない場合、続く fit2 と fit3 も非表示になります。
- ・ fit 対象のピークは gauss fit グラフの両端で切れることなく、ピーク全体を表示するようにします。
- ・ calculation タブの centroid 値と gauss fit グラフのピーク値が一致しない場合は、グラフの横軸範囲や fit のカー ソルを動かしてください。

2.5.終了

本画面を閉じる場合は、File - close をクリックします。

3. Tool 機能 peak search analysis

本ツールは、ピークを自動で検知するものです。専用画面にて、計測中またはデータファイルのヒストグラムデータ を対象に、自動でピークを検出して半値幅やカウント数などを算出することができます。

ピークサーチは、ガウス型平滑化二階微分フィルタを作成し、得られたスペクトルに対して平滑化二階微分を実施 し、その計数誤差と比較してピークサーチを行います。フィルタのパラメータはすべて自動計算されます。

3.1.処理フロー

※ 上記フローの通り、メモリの制約上、解析できるピーク数は最大100 になります。

3.2. ガウス型二階微分フィルタ

$$f(x; a, \mu, \sigma) = \frac{a(x-\mu)^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sigma^4} - \frac{a e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sigma^2}$$

where :

a: amplitude, μ : center, σ : standard deviation

3.3. ピーク関数の適合

スペクトルのピークに対して、フィッティング(関数適合)を実行します。 適合する関数形は「ガウス関数+1次式」で、フィッティングは非線形最小二乗法により行います。

ガウス関数+1次式

図6 複合ヒストグラムにフィッティングした ガウス関数+1 次式 (左拡大図)

3. 4. Covell法でROI計算

gross(count), net(count)の算出においては、Covell法を用いています。

図7 Covell 法による gross, net カウント

$L0 = P - FWHM \times 1.5$	$R0 = P + FWHM \times 1.5$
$L1 = P - FWHM \times 2$	$R1 = P + FWHM \times 1.75$
$L2 = L1 - FWHM \times 1.5$	$R2 = R1 + FWHM \times 1.5$

グロスカウント gross(count)、及び誤差 σgross(count)の計算 gross(count) = Np

 $\sigma gross(count) = \sqrt{\beta l^2 \times N l + \beta r^2 \times N r}$ $(R_1 + R_2 - L_0 - R_0)(R_0 - L_0 + 1)$

$$\beta l = \frac{(R_1 + R_2 - L_0 - R_0)(R_0 - L_0 + 1)}{(L_1 - L_2 + 1)(R_1 + R_2 - L_2 - L_1)}$$
$$\beta r = \frac{(L_0 + R_0 - L_1 - L_2)(R_0 - L_0 + 1)}{(R_2 - R_1 + 1)(R_1 + R_2 - L_2 - L_1)}$$

ネットカウント net(count)、及び誤差 σ net(count)の計算 net(count) = Np - $\beta l \cdot Nl - \beta r \cdot Nr$ σ net(count) = $\sqrt{Np + (\beta l^2 \times Nl + \beta r^2 \times Nr)}$

検出限界カウント(DL)

$$DL = \frac{Q^2}{2} \left\{ 1 + \sqrt{1 + \frac{4(net + \sigma net)}{Q^2}} \right\}$$

Q: Standard deviation

3.5. 起動画面

メニュー Tool - peak search analysis を実行します。実行後、下図の起動画面が表示されます。

図8 ピークサーチ起動画面

・メニュー部

File – open peak search file	ピークサーチファイル読み込み(後述の offline 時のみ有効)
File – open histogram file	ヒストグラムデータの読み込み(後述の offline 時のみ有効)
File – open trend file	トレンドファイルの読み込み(後述の offline 時のみ有効)
File – save peak search file	ピークサーチファイルへの書き出し
File - save trend file	トレンドファイルへの書き出し
File – save image	画面をpng形式で保存
File - close	画面の終了
• setting 部	
data source	解析対象データを選択します。
online	メイン画面で計測中のデータを対象とします。
offline	予め読み込んだヒストグラムデータファイルまたはピークサーチデータファイル内
	のデータを対象とします。
target CH	解析対象CHの指定
display error	calculation 部の各種算出値について、誤差(Standard deviation)表示の OFF、
	sigma、2 sigma、3 sigma を切り替えます。
sensitivity level	ピーク検知の閾値の選択。値が小さいとわずかなピークでも検知します。
search mode	ピークサーチの実行タイミングを指定します。
auto	後述 update interval 間隔で、毎回実行します。
manual	後述 manual search で start 押下した時に、一度だけ実行します。

取扱説明書 Tool 編	
manual search	manual search 選択時、ピークサーチを実行するタイミングを指示します。
calibration select	各ピークに対する ROI 幅の指定方法を選択します。
manual	エネルギーの大小に関わらず、全区間に渡って、ROI range(ch)で指定した幅を適用します。
file	FWHM 校正ファイルの値に基づき、エネルギーの大きさに応じた値を算出し、それに ROI
	range(FWHM)で指定した倍数を適用します。FWHM 校正ファイルの拡張子は".fc"固定になり
	ます。
	FWHM 校正ファイルについての詳細は、後述の Tool 機能 create calibration file を参照くださ
	ί ν _°
ROI range	各ピークに対する ROI を指定します。
	• calibration select が manual の場合は、ch 数で指定します。
	全区間で同じ値を指定することになるため、相対的に低エネルギー側のROI幅は広く、高エネル
	ギー側のROI幅は狭くなります。
	• calibration select が file の場合は、FWHM の倍数で指定します。
	ピーク毎にその中心 ch の値に応じた値を使用することにより、エネルギーの高低に関わらず-
	定のROI幅をとることができます。
threshold(ch)	ピークサーチ対象範囲の下限値を指定します。
update interval(sec)	online 計測中の時は、search mode がautoの場合の、ピークサーチの実行間隔および trend
	グラフのプロット間隔に使用されます。
	計測停止中や offline の時は、各種 setting 項目の変更を検出してピークサーチを再実行する間
	隔として使用されます。
clear all locks	calculation 部の lock ON を全てクリアします。
calibration file path	Tool 機能 create calibration file で作成したファイルの保存場所を指定します。
• calculation 部	
lock	リストの上部に表示したい場合チェックを ON にします。 OFF の場合、 ピーク検知する毎に表
	示位置が上下する場合があります。
centroid fit	全カウントの総和から算出される中心値(ガウスフィッティングからの算出値)
gross(count) raw	カウントの総和(実データからの算出値)
net(count) raw	バックグラウンドを差し引いたカウントの総和(実データからの算出値)
net(cps) raw	同 1 秒当たりの値(実データからの算出値)
net(count) fit	バックグラウンドを差し引いたカウントの総和(ガウスフィッティングからの算出値)
net(cps) fit	同 1 秒当たりの値(ガウスフィッティングからの算出値)
DL(cps) fit	検出限界
FWHM fit	半値幅

※ cps の算出においては、カウントの総和を live time で割っています。

※ centroid と FWHM の単位は、online 時はメイン画面でのエネルギー校正状況に、offline 時は読込対象ファイルに 格納されているエネルギー校正状況に、それぞれ従います。 次頁の calibration *a から calibration unit も同様です。

取扱説明書 Tool 編

・グラフ部右辺

real time	リアルタイム(実計測時間)
live time	ライブタイム(有効計測時間)
calibration *a	エネルギー校正係数*a が表示されます。
calibration +b	エネルギー校正係数+bが表示されます。
calibration x^2*c	エネルギー校正係数 x^2*c が表示されます。
calibration unit	エネルギー校正時の単位が表示されます。

number of peak 検出されたピーク数が表示されます。

• history タブ部

• trend タブ部

peak search グラフ peak search グラフ内 histogram プロットには、ピークサーチ対象のヒストグラムデータをグ ラフ表示します。Peak プロットはピークを検知した部分であり、ガウスフィットして赤色で表 示されます。グラフ左下の横スライドバーを左右に動かすと表示点数は一定のまま表示位置を変 えることができます。各チェックボックスのチェック有りはプロット表示、チェック無しはプロ ット非表示です。

図9 ピークサーチ画面 (trend タブ)

trend グラフnet (cps) raw または net (cps) fit の値の遷移をプロットします。プロット対象は lock された
ものに限定されます。プロット間隔は、前出 update interval(sec)に従います。plot start/stopプロットの開始・終了を指示します。

net (cps) plot プロット対象として、net (cps) raw、net (cps) fit のいずれかを選択します。

株式会社テクノエーピー

3.6.オンラインの場合

計測中に取得したヒストグラムを対象に、下記の手順でピークサーチ解析を行います。

(1) data source でonline を選択します。

(2) ヒストグラムモードで計測を開始します。計測中のヒストグラムがpeak search グラフに表示されます。

(3) peak search グラフでは、ピーク検知したピーク部分をガウスフィットして赤色のヒストグラムを表示します。 calculation 部にはピーク検知したピーク毎に半値幅等の演算結果が表示されます。ピーク検知がかかったりかからな かったりする場合、演算結果の表示が上下に移動して見え難いことがあります。この場合は、look チェックをON にす ると、該当ピークの演算結果が常に上部に表示されるようになります。

図10 ピークサーチ画面 (online 時)

3.7.オフラインの場合

ヒストグラムデータファイルまたはピークサーチデータファイルを読み込むことで、取得したヒストグラムを対象に、 下記の手順でピークサーチ解析を行います。

- (1) data source でoffline を選択します。
- (2) メニュー File open peak search file または File open histogram file をクリックします。ファイル選択 ダイアログが表示されるので、読み込み対象のデータファイルを選択して開きます。データファイル内のヒス トグラムが peak search グラフに表示されます。
- (3) peak search グラフでは、ピーク検知したピーク部分をガウスフィットして赤色のヒストグラムを表示します。

図11 ピークサーチ画面 (offline 時)

3.8.注意事項

- ピークサーチ処理を正常に動作させるために、下記の点にご注意ください。
- ・ ピークサーチのかかり具合は、sensitivity level の調整によって変化します。赤色のピーク検知部分の形状を見な がら各設定を最適になるよう調整します。

3.9.終了

本画面を閉じる場合は、File - close をクリックします。

4. Tool 機能 auto pole zero

※機器構成の都合上、非搭載の場合があります。

計測前に本ツールを使用することで、アナログポールゼロやスローポールゼロを自動で調整することができます。 オートポールゼロは、プリアンプのDecay time を計測することで設定値を算出します。Decay time の計測にはプ リアンプ波形関数をフィッティングさせて最適値を算出します。

プリアンプ波形関数は、特にHPGe などの半導体検出器のプリアンプ波形によくあてはまる exponentially modified Gaussian distribution をモデル関数として採用しております。計測を数回繰り返すことによって誤差を減らしております。

尚、計数率が高い場合や、プリアンプ波形がモデル関数と似つかわない、波形がオーバーレンジしているなどの場合、算出できないことがあります。

$$f(x; \mu, \sigma, \lambda) = \frac{\lambda}{2} e^{(2\mu + \lambda \sigma^2 - 2x)} \operatorname{erfc}\left(\frac{\mu + \lambda \sigma^2 - x}{\sqrt{2}\sigma}\right)$$

where,

$$erfc(x) = 1 - erf(x)$$

 $= \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$

 λ : decay, μ : center, σ : standard deviation

数式 3 exponentially modified Gaussian distribution

4.1. 起動画面

・メニュー部 File - close

画面の終了

メニュー Tool - auto pole zero を実行します。実行後、下図の起動画面が表示されます。

図12 オートポールゼロ起動画面

• 画面内	
module	対象機器の表示
level(digit)	トリガーレベルの設定。初期値はメイン画面の wave タブで設定した値。
position(digit)	トリガーした地点からのオフセット点数設定。初期値は300。
target CH	対象CHの選択。尚、CH1のみの機種はON固定。複数CHの機種は少なくても1つのCHが
	ON にならないと、後述の run ボタンが押せません。
coupling	メイン画面のCH タブで設定した値を表示。
running	オートポールゼロ実行中 CH の LED が点灯
analog pole zero before	オートポールゼロ実行前の analog pole zero 設定値
analog pole zero result	オートポールゼロ実行後の analog pole zero 設定値
	※ analog pole zero については coupling がRF の場合に限り、自動調整されます。
	RF 以外の場合は、実行前の値がそのまま実行後の値となります。
slow pole zero before	オートポールゼロ実行前の slow pole zero 設定値
slow pole zero result	オートポールゼロ実行後の slow pole zero 設定値
judge OK NG	実行後、結果に応じてOK(緑)またはNG(赤)が点灯。
	NG 時の詳細は message 欄を参照。
analog decay(μ s)	analog pole zero 調整中に取得される波形のディケイ(減衰部分の)時間の履歴。一定回数計
	測します。
average	同ディケイの平均値を表示
slow decay(μ s)	slow pole zero 調整中に取得される波形のディケイ(減衰部分の)時間の履歴。一定回数計測
	します。
average	同ディケイの平均値を表示

progress per CH	CH毎の進捗率を表示
message	実行結果表示
run	オートポールゼロ実行開始
abort	オートポールゼロ実行中断
initialize	実行前の pole zero 設定値を、本ツール起動時にメイン画面から引き継いだ値に戻します。
language	画面に表示されている説明文の言語(日英)切替え

4.2. 実行

取扱説明書 Tool 編

オートポールゼロを実行します。

- (1) 本画面を開く前に、機器に入力されている信号が正極性(positive)か負極性(negative)を確認し、予めメ イン画面の polarity に設定しておきます。
- (2) run ボタンをクリックします。直ちにオートポールゼロが開始されます。 処理中のCH にて running LED が点灯し、取得された波形のディケイ時間が decay 欄に一定回数分表示され ます。 指定CHについて一定回数取得完了後、算出された値がanalog pole zero result や slow pole zero result

に、実行結果のコメントがmessage欄に、それぞれ表示されます。

図13 オートポールゼロ実行中画面

実行中に中断する場合はabortをクリックします。 クリック後、中断されます。

終了後、result 欄の結果を、次回の実行向けやメイン側への反映用として、before 欄に反映するか否かを確認 する画面が表示されます。

反映する場合は Yes を、反映したくない場合は No をクリックしてください。

取扱説明書 Tool 編

4.3.注意事項

オートポールゼロ処理を正常に動作させるために、下記の点にご注意ください。

- ・ メイン画面の polarity に、入力している信号の極性を正しく設定しておく。
- ・ メイン画面の wave モードにて、level(トリガー波形取得用閾値)を調整して、安定してトリガーのかかる値にしておく。
- 計数が少ない場合はチェッキングソースなどを使用する。

4.4.終了

本画面を閉じる場合は、File - close をクリックします。

5. Tool 機能 auto threshold

※機器構成の都合上、非搭載の場合があります。

計測前に本ツールを使用することで、FAST 系フィルタ及び SLOW 系フィルタについて、波形取得開始タイミングの閾値を自動で調整することができます。

尚、計数率が高い場合や、波形がオーバーレンジしているなどの場合、正しく調整できないことがあります。

5.1. 起動画面

メニュー Tool - auto threshold を実行します。実行後、下図の起動画面が表示されます。

図14 オートスレッショルド起動画面

• メニュー部

File - close 画面の終了

• 画面内

number of measurement factor calc point	fast, slow 各々の波形の取得回数 波形解析時の重みの設定(low, middle, high から選択) 波形解析開始点の設定(256, 512 から選択)
signal	トリガーの ON/OF 切替え
trigger level	調整開始時のトリガーレベルの指定。初期値はメイン画面の wave モードにて設定した値
target CH	対象CHの選択。尚、CH1のみの機種はON固定。複数CHの機種は少なくても1つのCHがONにならないと、後述のrunボタンが押せません。
fast threshold before	自動調整前のFAST スレッショルド値
result	自動調整後のFAST スレッショルド値
slow threshold before	自動調整前の SLOW スレッショルド値
result	自動調整後の SLOW スレッショルド値

取扱説明書 Tool編 グラフ	調整中に取り込んだ波形を随時表示
progress	CH毎の進捗率
message	実行前ガイド文や実行結果の表示
run	オートスレッショルド実行開始
abort	オートスレッショルド実行中断
initialize	スレッショルド値を本ツール開始時の値(メイン画面で設定していた値)に戻します
language	画面に表示されている説明文の言語(日英)切替え

5.2. 実行

オートスレッショルド処理を実行します。

(1) 本画面を開く前に、機器に入力されている信号が正極性(positive)か負極性(negative)を確認し、予めメ イン画面の polarity に設定しておきます。

また、wave モードにて、level 値を調整し、安定してトリガのかかる閾値を確認しておきます。

(2) run ボタンをクリックします。直ちにオートスレッショルド処理が開始されます。 処理中のCH について、取得された波形がグラフに随時表示されます。 指定 CH について一定回数取得完了後、算出された値が result に表示され、message 欄に実行結果のコメントが表示されます。

auto threshold Version 1.0.1		\times
File		
number of measurement 波形の取得回数 な 20 (fast, slow各々)	arget fast threshid slow threshid before result 550 - CH1	
factor middle M数	H1 49 0 26 0 500 450	
calc point 512 波形解析の開始点	350 -	
signal 解析時はON、 波形確認のみ時は OFF	250 - 200 -	
trigger level main画面のwaveモードにて 6000 や トリガのかかる閾値を確認し、 その値を指定	150	
FAST threshold adjusting		
run abort initialize	・runボタンを押下すると、現在のfast threshold before値、及び slow threshold before値を元に自動調整を開始し、 結果をresult欄に表示します	
⊖English	初時1週(main)周辺から低年した1週) に戻しま 9 ns 🔒 🖄 🤐 digit 🔒 💯 👯	

図15 オートスレッショルド実行中画面

実行終了毎に、結果値を採用するか確認する画面が表示されます。Yes を選択すると、before 欄の値が result 欄の値 で更新されます。

実行中に中断する場合はabortをクリックします。クリック後、直ちに中断されます。

5.3.注意事項

オートスレッショルド処理を正常に動作させるために、下記の点にご注意ください。

- ・ メイン画面の polarity に、入力している信号の極性を正しく設定しておく。
- ・ メイン画面の wave モードにて、トリガーのかかる閾値を確認しておく。
- 計数が少ない場合はチェッキングソースなどを使用する。

5.4. 終了

本画面を閉じる場合は、File - close をクリックします。

6. Tool 機能 create calibration file

本ツールは、計測中またはデータファイルのヒストグラムデータを対象に、下記の式に従ってエネルギー校正ファイル(拡張子.ec)とFWHM校正ファイル(拡張子.fc)を作成するものです。

ヒストグラム計測時に、本ファイルを参照した半値幅などの計算が可能となります。

 $FWHM = a\sqrt{P} + bP + c$ FWHM:半値幅 P:ピーク中心(ch)

作成したエネルギー校正ファイルは、メイン画面の calibration タブにおいて、unit of axis で file を選択した際、 calibration file path に指定します。

一方、作成された FWHM 校正ファイルは、Tool 機能 peak search analysis で参照することで、ピーク中心 chの大きさに応じた ROI 幅の指定が可能となります。

6.1. 起動画面

メニュー Tool - create calibration file を実行します。実行後、下図のような起動画面が表示されます。

図16 Create Calibration File 起動画面

・ メニュー部

open calibration file エネルギー校正ファイル(拡張子.ec)、もしくは FWHM 校正ファイル(拡張子 fc)を指定する ことで、同名の FWHM 校正ファイル(読込がエネルギー校正ファイルの時)、もしくは同名 のエネルギー校正ファイル(読込が FWHM 校正ファイルの時)を同時に読込みます。 File - close 画面の終了。

株式会社テクノエーピー

• 画面内	
Select	計算に使用するROIの選択/解除。
	(ROI CH と範囲については、メイン画面の histogram タブにて設定)。
ROICH	target CH で選択された CH を表示。
ROI start(ch)	ROI 設定開始値。単位は ch 固定。
ROI end(ch)	ROI 設定終了値。単位は ch 固定。
energy(ch)	ROI 設定エネルギー。単位は ch 固定。
centroid(ch)	ROIの中心値。単位はch固定。
energy(ch)	ROI 設定エネルギー。単位は ch 固定。
FWHM(ch)	ROIの半値幅。単位は ch 固定。
mode	calc:随時 calibration 値を自動計算します。
	view:calibration 値を自動計算しないとき、ファイル open 後、結果を維持するため自動
	的に view mode になります。 calc mode へは、手動で戻してください。
target CH	calibration 対象の CH を選択。
calculation	calibration中に点灯。
writing	ファイル作成中に点灯。
save file	計算に使用する ROI を最低3 個以上選択すると、押下可能になります。
	本ボタン押下により、計算結果を指定されたファイルに書き出します
language	注釈の標記を日本語と英語のどちらかを表示。
energy calibration	計算結果を表示。
FWHM calibration	計算結果を表示。
open file name	メニュータブの open calibration file で open するファイル名を指定。

6.2.実行

Select 列にて、計算に使用する ROI を3 つ以上選択後、create file ボタンを押下します。ファイル名の入力を促す 画面が表示されますので、入力確定後、下図のように画面が更新されます。

図17 Create Calibration File 実行後画面

6.3.終了

本画面を閉じる場合は、File - close をクリックします。

取扱説明書 Tool 編

株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL:029-350-8011 FAX:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com