XAFS 計測用高計数 DSP

APU508XG

取扱説明書

第1.2.3版 2025年9月

株式会社 テクノエーピー

〒312-0012 茨城県ひたちなか市馬渡 2976-15

TEL: 029-350-8011 FAX: 029-352-9013

URL: http://www.techno-ap.com

e-mail: info@techno-ap.com

安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下、弊社)の製品をご購入いただき誠にありがとうございます。 ご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正しくご使用ください。

弊社製品のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

禁止事項

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高温度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

注意事項

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

保証条件

「当社製品」の保証条件は次のとおりです。

- ・保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
 - (ア) 「当社製品」本来の使い方以外のご利用
 - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
 - (ウ) 消耗品等

一目次一

1.		概要	5
1.	1.	概要	5
1.	2.	特徴	6
2.		仕様	7
3.		外観	9
4.		セットアップ	11
4.	1.	アプリケーションのインストール	11
4.	2.	接続	11
4.	3.	ネットワークのセットアップ	12
5.		アプリケーション画面	13
5.	1.	起動画面	13
5.	2.	CH タブ	15
5.	3.	advanced タブ	19
5.	4.	config タブ	21
5.	5.	histogram タブ	23
5.	6.	ROI-SCA 機能	25
6.		初期設定	26
6.	1.	電源と接続	26
6.	2.	設定実行	26
6.	3.	プリアンプ出力信号のアナログ入力レンジの確認	27
6.	4.	advanced タブの coupling を DC で計測する場合	28
6.	5.	FAST 系フィルタ(時間取得用)フィルタの設定	29
6.	6.	SLOW 系フィルタの設定	30
6.	7.	SLOW 系スレッショルドの設定	32
7.		計測	33
7.	1.	設定	33
7.	2.	計測開始	33
7.	3.	ヒストグラムモード	33
7.	4.	クイックスキャンモード	34
7.	5.	計測停止	34
8.		終了	34
9.		ファイル	35
9.	1.	ヒストグラムデータファイル	35
9.	2.	クイックスキャンデータファイル	37
10).	トラブルシューティング	38
10). 1	接続エラーが発生する。	38
10). 2	. コマンドエラーが発生する	38

10. 3.	ヒストグラムが表示されない	39
10. 4.	P アドレスを変更したい	39

1. 概要

1. 1. 概要

テクノエーピー社製 DSP(Digital Signal Processor、デジタルシグナルプロセッサー)製品は、リアルタイムデジタルシグナルプロセッシング機能を搭載したマルチチャネルアナライザ(MCA)です。

これまでの放射線計測は、プリアンプからの信号をスペクトロスコピアンプに渡し、アナログ回路によって増幅と波形整形処理をして、MCA などの計測装置に合わせてスペクトル解析を行っていました。

DSP の場合は、非常に高速な 100MHz・16Bit の A/D コンバータを利用して、プリアンプからの信号を直接デジタルに変換します。デジタルに変換されたデータは高集積 FPGA (Field Programmable Gate Array) に送られ、数値演算によって、スペクトル分析されます。プリアンプの信号は FPGA によるパイプラインアーキテクチャによって、リアルタイムに台形フィルター(Trapezoidal Filter)処理されます。

DSP の構成はスペクトロスコピアンプと MCA を一体化したもので、伝統的なアナログ方式に代わり最新のデジタル信号処理技術を用いたパルスシェイピングを実行します。

台形フィルターの他に、タイミングフィルタアンプ、CFD、波形デジタイザ等の機能を有しています。

非常に優れたエネルギー分解能と時間分解能を提供し、高い計数率時でも抜群の安定感を持ちます。またアナログ方式最高スループットを誇るゲートインテグレータアンプ以上のスループット(100Kcps 以上)を提供します。

最大8CHのマルチチャンネルDSPは、すべてのADCが同期して動作しており、またモジュール間も同期させることが可能です。多チャンネルのシステムや、コインシデンス、アンチコインシデンスシステム、エネルギーと時間の相関解析にも応用できます。

本書は、APU508XG(以下本機器)について説明するものです。

- ※ 文章中、信号入力のチャンネルは"CH"、ビン数を表すチャネルは"ch"と大文字小文字を区別してあります。
- ※ 文章中の、"リスト"と"イベント"は同意義です。
- ※ 本機器にはオプションとして機能を追加することが可能です。本書ではその機能部分を(オプション)と明記します。

1. 2. 特徵

主な特徴は下記の通りです。

- X線スペクトロスコピ用デジタルシグナルプロセッシング
- 多素子SSDの高エネルギー分解能検出器に最適
- SDD(シリコンドリフト検出器)、Si(Li)、SiPin 検出器などのスペクトル解析
- 高集積 FPGA によるデジタルパルスシェイピング(Digital Pulse Shaping)
- イーサネット(TCP/IP)によるデータ収録

検出器のプリアンプの出力信号を直接 DSP へ入力し、DSP 内の高速 ADC(100MSPS)でデジタル化します。デジタルパルスプロセッシングの心臓部である A/D コンバータは、最新の 100MHz・16bit の高速、高分解能パイプライン型 ADC を採用し、プリアンプからの信号を直接デジタイズします。

FPGA にてハードウェア演算により台形波形処理を行います。台形波形に整形するために必要なシェイピングタイムは、PC からのパラメータにより設定します。FAST 系と SLOW 系とも、ピーキングタイム (Peakingtime = Rise time + Flat top time) によりピーク値をデジタル的に検出します。

FAST 系とSLOW 系の2種類のフィルタブロックで処理されます。

FAST 系でタイミングを取得とパイルアップリジェクト (Pile up Reject) を行います。

SLOW 系でポールゼロ キャンセル (Pole zero Cancel)、ベースライン レストアラ (Baseline Restorer) 処理後エネルギー解析を行います。

FPGA に取り込んだプリアンプ信号や台形波形処理信号は DAC (Digital Analog Converter)で出力し、デジタルオシロスコープにて動作確認できます。

FAST-SCA 機能により、予め設定した ROI 間のピーク検出タイミングと Input タイミングで TTL ロジック出力を得ることが可能です。

Quick scan 機能により、外部トリガタイミング間隔でその間のヒストグラムデータを PC 側に送信し、PC 側で連続して HDD にデータを保存することが可能です。 QXAFS 計測に最適です

DSP への設定やデータの取得は、付属の DSP アプリケーション(以下本アプリ)で行います。本アプリは Windows 上で動作します。付属アプリ以外にも、コマンドマニュアルを元にプログラミングすることも可能です。 DSP との通信は TCP/IP や UDP でのネットワーク通信のみため、特別なライブラリは使用せず、Windows 以外の環境でもご使用頂けます。

2. 仕様

(1) アナログ入力

チャネル数 8CH入力レンジ ±2V入力インピーダンス 1kΩ

コースゲイン ×1、×5、×10、×20 ※納品時の仕様によります。

(2) ADC

・サンプリング周波数 100MHz

分解能 16bit ※フルスケール±2V にて

(3) MCA

• ADC ゲイン 8192、4096、2048、1024、512、256 チャネル

計測モード ヒストグラムモード、クイックスキャンモード

(4) 機能

• Quick scan CH 当たり 8192 チャネルのヒストグラム送信

(5) オプション

FAST-SCA 機能 fast タイミング及びROI間でピーク検出時に外部出力端子よりLVTTL ロジック信号を出力

(6) デジタルパルスシェイピング

• Trapezoidal Filter $0.05 \mu s \sim 12 \mu s$ • Fine gain $\times 0.5 \sim \times 1.25$

• Baseline Restorer

• Pile up Reject

• LLD (Low Level Discriminator)

• ULD (Upper Level Discriminator)

(7) 外部端子

MONI 内部フィルタ結果アナログ波形出力、preamp、fast、slow、CFD
 CLK-I クロック信号入力、LVTTL または TTL 25MHz ロジック信号
 CLK-O クロック信号入力、LVTTL または TTL 25MHz ロジック信号

AUX1 外部 CLR 入力、時間のクリアに使用

・AUX2 GATE 機能及び quick scan モード時タイミング信号入力、LVTTL また

は TTL ロジック信号

(8) プリアンプ電源 ±12V、±24V (NIM 規格準拠)

(9) 通信インターフェース TCP/IP 10GBASE-SR、データ転送用

UDP コマンド送受信用

(10) 消費電流 +6V 1.7A (最大)

+12V O.5A (最大)

-12V 0.5A (最大)

※ プリアンプ電源の消費電流は含みません。

※ 本体部の電力はデジタル回路用電源の選択により必要な電圧及び電流 が変わります。

+12V 2.0A(最大)※ユニットタイプの場合、単一電源供給

(11) 形状

・ユニット型 APU508XG

(12) 外径寸法

• ユニット型 210 (W) x 52 (H) x 250 (D) mm

(13) 重量

・ユニット型 約1700g

(14) PC環境

・OS Windows 7 以降、32bit 及び64bit 以降

• 画面解像度 FHD (1920×1080) 以上推奨

・ネットワークインターフェース

3. 外観

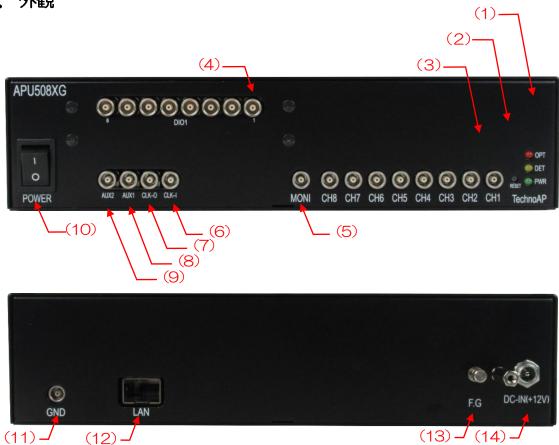


写真 1 APU508XG(上:フロントパネル、下:リアパネル)

(1)	LED	OPT(赤) TCP の接続が確立されていない場合は点灯します。DET (橙) アナログ信号パルスを検出した際に点灯します。PWR(緑)
(2)	RESET	電源ランプ。本機器に電源が投入される点灯します。 リセットボタン。 (未使用)
(3)	CH1~CH8	信号入力用 LEMO 社製 OO.250 互換コネクタ。入力レンジは±2V、コースゲインはアプリから×2、×4、×10、×20(納品時仕様による)を選択、入力インピーダンスは 1kΩ。
(4)	DIO	が
(5)	MONI (MON)	モニター出力用 LEMO 社製 00.250 互換コネクタ。CH1~8 の DSP 処理中の信号等を DAC 出力します。出力可能な電圧範囲は±1V (1MΩ 終端時)。
(6)	CLK-I	外部クロック信号入力用 LEMO 社製 OO.250 互換コネクタ。外部クロックを使用して外部機器と同期を取ることができます。25MHz、Dutyサイクル 50%の矩形 LVTTL 信号を入力してから電源を投入します。(未使用)
(7)	CLK-O	外部クロック信号出力用 LEMO 社製 00.250 互換コネクタ。 25MHz、Duty サイクル 50%の矩形 LVTTL 信号が出力されます。 (未使用)
(8)	AUX1	アブソリュートカウンタクリア信号入力用 LEMO コネクタ。LVTTL ロジック信号。20ns 以上の High レベル信号を入力するとアブソリュートカウンタをクリアします。レベルセンス動作となります。この端子 は内蔵 10kΩ の抵抗によりグランドに接続されています。
(9)	AUX2	外部ゲート信号入力用及び Quick scan ゲート信号入力用 LEMO 社製

00.250 互換コネクタ。アプリケーションから機能を選択します。

LVTTL 信号を入力することができます。

外部ゲート入力機能の時は、入力が"High"の間データの取得を有効にします。

Quick scan 入力機能の時は、最小周期は 1ms で、High レベルが 10ms 続き、その後 Low レベルが最短 10μ s となり、これを 1 周期 とします。quick scan モードでの動作中は、ネガティブエッジを検出し、ヒストグラムメモリの切り替えを行います。

(10) POWER ユニットへの電源供給用 ON/OFF スイッチです。

 (11) GND
 未接続の補助 GND。信号が不安定な時に接続します。

 (12) LAN
 (12) LAN

(12) LAN イーサネットケーブル用 SFP コネクタ。トランシーバモジュールを接続します。10 ギガビットイーサネット。

(13) F.G 筐体アース接続用端子。通常は未使用。ご使用の環境の電気配線によっては検 出器筐体などと接続することでノイズ低減できる場合がございます。

(14) DC-IN(+12V) ユニット本体への電源供給コネクタ。付属専用 AC アダプタ(抜止め金具付)をご使用ください。

4. セットアップ

4. 1. アプリケーションのインストール

本アプリはWindows上で動作します。ご使用の際は、使用するPCに本アプリのEXE(実行形式)ファイルとNational Instruments 社のLabVIEW ランタイムエンジンをインストールする必要があります。 本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラには、EXE(実行形式)ファイルと LabVIEW のランタイムエンジンが含まれており、同時にインストールができます。インストール手順は以下の通りです。

- (1) 管理者権限でWindows ヘログインします。
- (2) 付属CD-ROM内Installer フォルダ内のSetup.exe を実行します。対話形式でインストールを 進めます。デフォルトのインストール先は"C洋TechnoAP"です。このフォルダに、本アプリ の実行形式ファイル dsp_mca.exe と設定値が保存された構成ファイル config.ini がインストールされます。
- (3) スタートボタン TechnoAP APP508 を実行します。 尚、アンインストールはプログラムの追加と削除から APP508 を選択して削除します。

4. 2. 接続

本機器とPCをイーサネットケーブルで接続します。PCによってはクロスケーブルをご使用ください。 ハブを使用する場合はスイッチングハブをご使用ください。

4. 3. ネットワークのセットアップ

本機器と本アプリの通信状態を下記の手順で確認します。

(1) PCの電源をONにし、PCのネットワーク情報を変更します。

P アドレス : 192.168.10.2 ※本機器割り当て以外のアドレス

サブネットマスク : 255,255,255.0 デフォルトゲートウェイ : 192,168,10.1

- (2) 電源をONにします。電源投入後30秒程待ちます。
- (3) PC と本機器の通信状態を確認します。Windows のコマンドプロンプトにて ping コマンドを実行し、本機器と PC が接続できるかを確認します。本機器の IP アドレスは基板上またはユニットの背面にあります。工場出荷時の本機器のネットワーク情報は以下の通りです。

Pアドレス : 192.168.10.128サブネットマスク : 255.255.255.0デフォルトゲートウェイ : 192.168.10.1

> ping 192.168.10.128

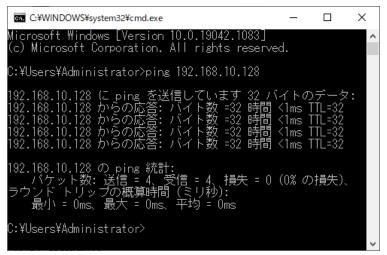


図 1 通信接続確認 ping コマンド実行

(4) 本アプリを起動します。デスクトップ上のショートカットアイコン APP508 または Windows ボタンから APP508 を検索して起動します。

本アプリを起動した時に、本機器との接続に失敗した内容のエラーメッセージが表示される場合は、後述のトラブルシューティングを参照ください。

5. アプリケーション画面

5. 1. 起動画面

本アプリ APP508 を実行すると、以下の起動画面が表示されます。

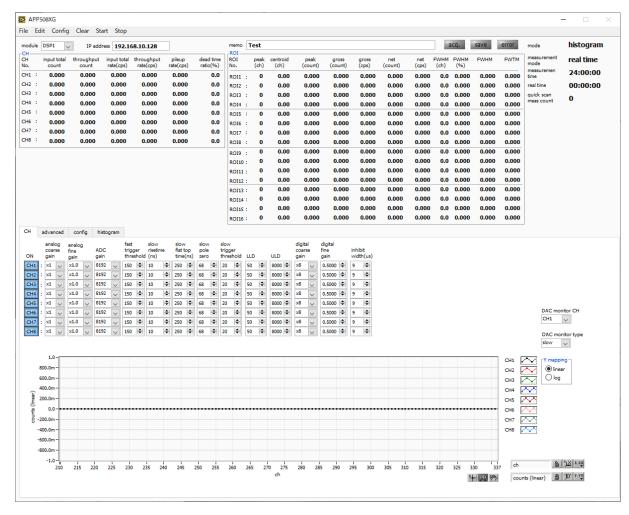


図2 起動画面

・メニュー

File - open config 設定ファイルの読み込み

File - open histogram ヒストグラムデータファイルの読み込み

File - save config 現在の設定をファイルに保存

File - save histogram 現在のヒストグラムデータをファイルに保存

File - save image 本アプリ画面を PNG 形式画像で保存

File - quit 本アプリ終了

Edit - copy setting of CH1 CH タブ内の CH1 の設定を他の全 CH の設定に反映

Edit - IP configuration 本機器のIPアドレスを変更

Config 本機器へ全項目を設定

Clear 本機器内のヒストグラムデータを初期化

Start本機器へ計測開始Stop本機器へ計測停止

タブ

CH 各入力 CH に関する設定

advanced 各入力 CH に関する高度設定

config 入力 CH 以外の設定及び保存や計測に関する設定

histogram ヒストグラム表示、ROI (Region Of Interest) の設定

CH部 CH毎の状況を表示します。

input total count 入力のあったイベント数 throughput count 入力に対し処理した数

input total rate(cps) 1 秒間の入力のあったイベント数 throughput rate(cps) 1 秒間の入力に対し処理した数 pileup rate(cps) 1 秒間のパイルアップカウント数

dead time ratio(%) デッドタイムの割合。取り込み毎の瞬時値

ROI 部 ROI 間の算出結果を表示します。

peak(ch) 最大カウントの ch

centroid(ch) 全カウントの総和から算出される中心値(ch)

peak(count) 最大カウント

gross(count) ROI 間のカウントの総和

gross(cps) gross(count)÷計測経過時間

net(count) ROI 間のバックグラウンドを差し引いたカウントの総和

net(cps) net(count)÷計測経過時間

FWHM(ch) 半値幅(ch)

FWHM(%) 半値幅(%)。半値幅÷ROI 定義エネルギー×100

FWHM 半値幅 FWTM 1/10幅

module 計測対象とする機器を選択

IP address Pアドレス。構成ファイルにて定義し、moduleで選択したDSPのIP

アドレスを表示

memo 任意テキストボックス。計測データ管理用にご使用ください

acq. LED 計測中に点滅

save LED リストデータ保存中に点滅

error LED エラー発生時点灯

mode 動作モード。 histogram または quick scan を表示

measurement mode 計測モード。 real time を表示

measurement time 設定した計測時間

real time 有効先頭 CH のリアルタイム(実計測時間)

計測終了時 measurement time と等しくなります。

quick scan meas count quick scan モード時のデータ読み込み回数。

5. 2. CH タブ

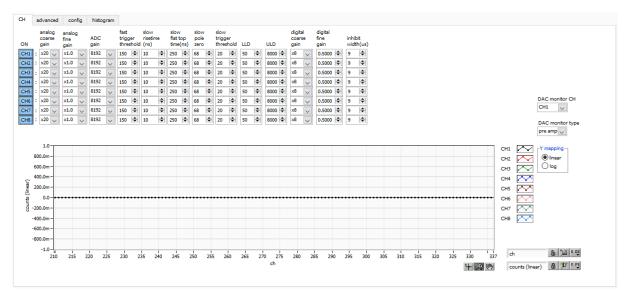


図3 CHタブ

ON CH 使用有無。

analog coarse gain アナログ粗ゲイン。1 倍、2 倍、3 倍、5 倍から選択します。※納品時の仕様

によります。取り込んだプリアンプ出力信号を内部で増幅します。

analog fine gain

ADC gain

アナログのファインゲイン調整。0.5 倍、0.75 倍、1.0 倍から選択します。

ADC のゲイン(チャネル)。8192(デフォルト)、4096、2048、チャ

ネルから選択します。

histogram グラフの横軸の分割数になります

fast trigger threshold

FAST 系フィルタを使用した波形取得開始のタイミングの閾値。単位は digit。 設定範囲は 0 から 8191 です。

取り込んだプリアンプ出力信号を元に、タイミングフィルタアンプ回路の微分処理と積分処理をした FAST 系フィルタ波形を生成します。その波形にて、この閾値以上になった場合に、その時点での時間情報取得タイミングやスペクトロスコピーアンプ回路での波形生成開始のタイミングを取得します。主に時間取得(タイムスタンプ)に関係します。

この閾値が小さ過ぎるとノイズを検知し易くなり input total rate(cps)が増えることになります。input total rate(cps)レートを見ながら、極端に数値が増えるノイズレベルの境目より数 digit 高めに設定します。デフォルト設定は50digitです。

slow risetime(ns)

SLOW 系フィルタのライズタイム。下図の SLOW 系(台形)フィルタの上底に到達するまでの立ち上がり時間です。短い値だとエネルギー分解能は悪いがスループットは多くなり、長い値だとエネルギー分解能は良いがスループットが少なくなるという傾向があります。リニアアンプのピーキングタイムは 2.0~2.4×時定数になっていることが多いので、リニアアンプの時定数の 2 倍程度のライズタイムで同じような分解能を示します。デフォルト設定は 800nsです。これはリニアアンプのシェイピングタイム 0.5 μs に相当します。

slow flat top time(ns) SLOW 系フィルタのフラットトップタイム。下図の SLOW 系(台形) フィル タの上底部分の時間です。プリアンプ出力信号の立ち上がり(立ち下がり)の バラツキによる波高値の誤差を、台形の上底の長さで調整します。設定値はプ リアンプ出力信号の立ち上がり(立ち下がり)時間の0から100%で、最も遅 い時間の2倍の時間を目安とします。デフォルト設定は 300ns です。この場 合は立ち上がり(立ち下がり)の最も遅い時間を 150ns と想定しています。

※ DSP のスループットは以下の式のようになります。

(slow rise time + slow flattoptime) $\times 1.25$

slow pole zero

SLOW 系ポールゼロキャンセル。SLOW 系フィルタの立ち下りアンダーシュ ートまたはオーバーシュートをこの値を適切に設定することで軽減することが できます。デフォルト設定は 65 です。この値は検出器によって変わりますの で、フロントパネル上 MONI 端子とオシロスコープを接続して、DAC モニタ の種類で SLOW 系フィルタを選択して、SLOW 系フィルタの立ち下がり部分 が平坦になるように調整します。

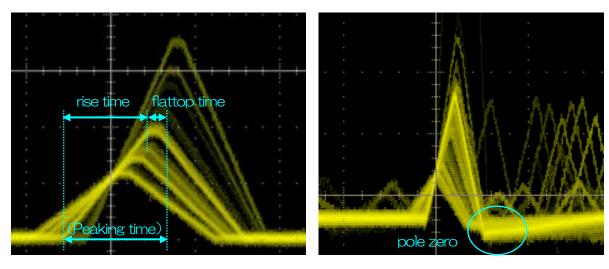


図 4 SLOW 系 (台形) フィルタ

※ 右図はSLOW 系フィルタにアンダーショートがあり pole zero があっていない例です。この場合、 slow pole zero の値を現在の設定より下げることで、アンダーシュート部分が上側に持ち上がりま す。

slow trigger threshold Slow 系フィルタの波形取得開始のタイミングの閾値。単位は digit です。設定 範囲は0から8191です。デフォルト設定は40digitです。この値を上下させ throughout rate(cps)の増えるところであるノイズレベルより 10digit 程度上 に設定します。後述のLLD以下に設定します。生成された SLOW 系フィルタ の波形において、この閾値以上になった時に、予め設定した時間 (slow rise time + slow flattop time) における波高値を確保します。

LLD

エネルギーLLD (Lower Level Discriminator)。単位は ch です。この閾値 より下の ch はカウントしません。show trigger threshold 以上かつ ULD より小さい値に設定します。

ULD

エネルギーULD (Upper Level Discriminator)。単位は ch です。この閾値 より上の ch はカウントしません。LLD より大きく、ADC ゲインより小さい値 に設定します。

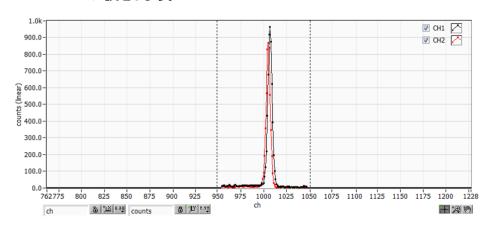


図 5 LLD とULD の設定例

※ 上図はLLDを955、ULDを1045に設定した例です。LLDより小さい部分とULDより大きい部分が計測されないことが分かります。

digital coarse gain

デジタル的にゲインを1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍から選択します。台形フィルタの場合、積分回路は積和演算によって計算されます。slow rise time を大きく設定するほど積和演算の回数が増え数値が大きくなり、小さく設定するほど数値が小さくなります。この値がそのままSLOWフィルタの値になるため補正をする必要があります。slow rise time の設定と合わせて使用します。

digital fine gain

デジタル的にファインゲインを設定します。設定範囲は0.3333 倍から 1 倍です。digital coarse gain 同様に補正に使用します。digital coarse gain と digital fine gain の設定により SLOW 系フィルタの波高値が変わるので、結果 histogram のピーク位置調整に使用できます。

inhibit width (μs)

トランジスタリセット型プリアンプ用のリセット検出時からの不感時間幅。検出器からの inhibit 信号を入力せずに内部で処理し、この間の計数を行いません。設定範囲は $0 \sim 163 \, \mu s$ 。デフォルトは $8 \, \mu s$ ec です。

DAC monitor CH

DAC 出力を行う CH 番号選択します。選択した CH の DAC monitor type で選択した波形が MONI 端子から出力されます。

DAC monitor type

DAC 出力の波形選択。DSP 内部で処理された波形のうち、選択した種類の波形信号を MONI 端子からアナログ出力します。この信号をオシロスコープで見ることにより、DSP 内部での処理状態を確認できます。

pre amp プリアンプ信号を微分した信号。内部に取り込んだ時点で、計測 対象エネルギーレンジが 1V 以内におさまっているかの確認、ポールゼロ調整に使用します。 fast FAST 系フィルタ信号

slow SLOW 系フィルタ信号。波形整形処理後のポールゼロ調整に使用

します。

CFD の信号。CFDタイミングを使用時にCFD delay やfunction

の設定状態が確認できます

グラフ CH1 から最大 CH8 のエネルギースペクトル(ヒストグラム)を表示します。

横軸がエネルギー、縦軸がカウントです。グラフの設定は histogram タブ内の

設定が反映されます。

5. 3. advanced タブ

config	fast diff	fast integral	fast pole zero	pile up rejector	polarity	timing select	CFD functio	n	CFD delay(ns	coup) select		ana offs	alog set	coinc (ch							coinc t		veto tii	me	tr rst d (digit)	iff num
CH1 :	100 🕌	20 🕌	0	OFF 🕌	pos 🔻	CFD 🔻	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	10	-	100	-	-50	-
CH2 :	100 🕌	20 🐷	0	OFF 🐷	pos 🔻	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						
CH3 :	100 🕌	20 🐷	0 🔷	OFF 🕌	pos 🔻	CFD 🕌	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						
CH4 :	100 🕌	20 🐷	0	OFF 🐷	pos 🕌	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						
CH5 :	100 🕌	20 🐷	0 🔷	OFF 🕌	pos 🔻	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						
CH6 :	100 🕌	20 🐷	0 🔷	OFF 🐷	pos 🕌	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						
CH7 :	100 🕌	20 🐷	0 🔷	OFF 🕌	pos 🔻	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8						
CH8 :	100 🕌	20 🕌	0 🚔	OFF 🕌	pos 🔻	CFD 🐷	0.25	•	20 💂	DC	•	65	-	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8						

図 6 advanced タブ

config メニューConfigを実行した際、advancedタブ内の設定送信の可否。起動時1

回は設定します。2回目以降はOFFにすることで設定回数を軽減することが可

能です。

fast diff FAST 系微分回路の定数。設定はext(除外)、20、50、100、200。 fast integral FAST 系積分回路の定数。設定はext(除外)、20、50、100、200。

fast pole zero FAST 系ポールゼロキャンセルを設定します。デフォルト設定は O で自動設定

です。

pileup rejector パイルアップリジェクトの使用可否を設定します。波形整形された信号の立ち

上がり時間以下で生じた2つのパルスは、波形が重なり実際のピーク値とは異なる値になります。高計数下においては大きなバックグラウンドノイズになります。デジタル信号処理によりこのイベントを除外するパイルアップリジェクトを行います。対象となる時間は(risetime + flattoptime) × 1.25 でこの間に 2 つイベントがあった場合、リジェクトされます。パイルアップリジェクトの回数が多いほど、input count が複数あるのに対し、throughput

countがOになるため、その差は大きくなります。

polarity プリアンプ信号の極性を選択します。 pos は正極性、neg は負極性です。

timing select タイムスタンプを決定するタイミングを選択。

LET リーディングエッジ (Leading Edge Timing)

CFD コンスタントフラクションタイミング(Constant Fraction

Disicriminator Timing)

CFD function CFD 算出用に元波形を縮小するための倍率。

0.125、0.25、0.375、0.5、0.625、0.75、0.875から選択。

CFD delay CFD 遅延時間を 10、20、30、40、50、60、70、80ns から選択。

Processing mode 計測モードを選択できます。

Hi-count 高計数モードで計測できます。 Hi-resolution 高分解能モードで計測できます。

analog offset アナログオフセットを選択します。

coinc ch コインシデンスを取りたい CH を選択します。コインシデンスが取れた場合は

後述の veto time 分だけ無効にします。

coinc time(ns) コインシデンス時間を設定します。単位はnsです。

veto time(ns)

VETO したい時間を設定します。単位は ns です。目安はピーキングタイム時間分です。

5. 4. config タブ

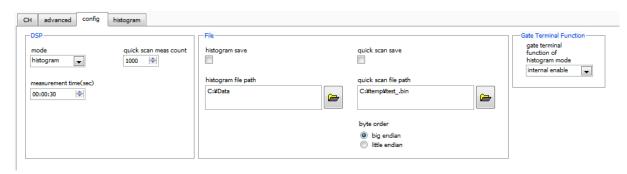


図7 config タブ

• DSP部

mode 動作モードです。以下から選択します。

histogram ヒストグラムモード。プリアンプ出力信号の波高値(SLOW 系フィルタの波高値)を最大 8192 の ch に格納し、横軸エネルギー、縦軸カウントのヒストグラムを取得します。

quick scan クイックスキャンモード。QSG(Quick Scan Gate)端子へ LVTTL の立ち上がりエッジを受信する毎にヒストグラムを取得 するモードです。最小時間間隔は 10ms です。プリアンプ出力 信号の波高値を 8192ch に格納し、ヒストグラムを作成します。

measurement time

計測時間。設定可能範囲は00:00:00 から48:00:00 です。

• file 部

histogram save 計測終了時に histogram タブに表示されているヒストグラムデータをファイル

に保存します。ファイルの保存先は後述のフォーマットになります。

histogram モード時のみ有効です。

histogram file path ヒストグラムデータファイルの絶対パスを設定。拡張子無しも可能です。

※注意※ このファイル名で保存されるのではなく、このファイル名をもとにして以

下のフォーマットになります。

例: histogram file path に C: \ Data\ Histogram.csv、日時が2010/09/01

12:00:00 の場合は、C:\text{Data\text{+histogram_20100901_120000.csv}}

いうファイル名でデータ保存します。

quick scan save quick scan モード時チェックを入れるとデータ保存を有効にします。チェック

を入れない場合はデータが保存されません。

quick scan file path quick scan データファイルの保存パスを絶対パスで設定します。

※注意※ ヒストグラムデータファイルと異なり、このままの名称が使用されます。

従って、過去に指定して既にファイルが存在する場合、エラーになります。

byte order quick scan データファイルはバイナリ形式なので、エンディアンを選択します

big endian ビッグエンディアン。最上位バイトから保存します。

little endian リトルエンディアン。最下位バイトから保存します。Windows

PC の場合、HDD への書き込みが早く、プログラムでの読み込

みが容易な場合があります。

• Gate Terminal Function 部

gate teminal function histogram モード時の Gate 信号を選択します。 of histogram mode internal enable 内部 Gate 信号を使用します

internal disable 内部 Gate 信号を無効にします

external 外部 Gate 信号を使用します

5. 5. histogram タブ

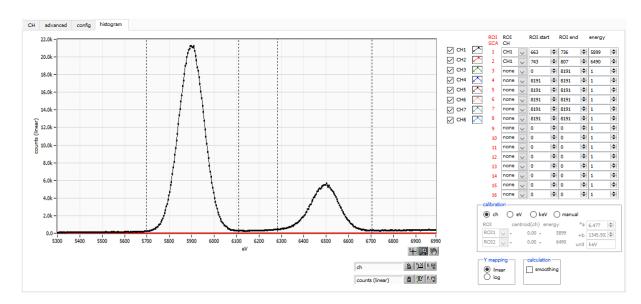


図 8 histogram タブ

		·	
グラフ		config タブ内 mode にて histogram る	~_XXIU /~TY
• / / /	1 3157 7757 775		41 111 411 111 122 123 124 125

計測中にエネルギーヒストグラムを表示します。

凡例チェックボックス グラフに CH 毎のヒストグラムを表示するか否かの選択をします。

ROI CH ROI (Region Of Interest) を適用する CH 番号を選択します。 1 つのヒスト

グラムに対し最大 16個のROIを設定可です。

ROI start ROI の開始位置。単位は後述 calibration で選択した単位です。 ROI end ROI の終了位置。単位は後述 calibration で選択した単位です。

ROI-SCA ROI 間にて信号を検出した場合、DSP フロントパネル上の AUX1 から

AUX16 の各端子から 1 μ sec の LVTTL ロジック信号を出力します。

ROI1 はAUX1 端子に、ROI16 はAUX16 に対応します。

energy ピーク位置(ch)のエネルギー値の定義。 $Mn-K\alpha$ の場合 5.89keV、 $Mn-K\beta$ の

場合 6.49keV と設定します。後述の calibration にて ch を選択した場合、ROI 間のピークを検出しそのピーク位置(ch) と設定したエネルギー値から

keV/chを算出し、半値幅の算出結果に適用します。

calibration X 軸の単位。設定に伴いX 軸のラベルも変更されます

ch ch (チャネル) 単位表示。ROI の FWTM の FWHM などの単位

は任意になります。

eV eV単位表示。1つのヒストグラムにおける2種類のピーク(中心

値)とエネルギー値の2点校正により、chがeVになるように1 次関数y=ax+bの傾きaと切片bを算出しX軸に設定します。ROI

の FWTM の FWHM などの単位は eV になります。

keV keV 単位表示。1 つのヒストグラムにおける2 種類のピーク(中

心値)とエネルギー値の 2 点校正により、ch が keV になるように 1 次関数 y=ax+b の傾き a と切片 b を算出し X 軸に設定しま

Y mapping

イ 軸節囲

+

す。ROI の FWTM の FWHM などの単位は keV になります。例:585.25ch にMn-K α の 5.89(keV)、642.14ch にMn-K β の 6.49(keV)がある場合、2点校正より a を 10.144、b を -23.677 と自動算出します。

manual 1 次関数 y=ax+b の傾き a と切片 b と単位ラベルを任意に設定し X 軸に設定します。単位は任意に設定します。

グラフのY軸のマッピングを選択します。Y軸のラベルも変更されます。

linear 直線 log 対数

smoothing 統計が少ない場合に半値幅を計算するためのスムージング機能です。

X axis calibrationX 軸の単位を選択します。Y axis calibrationY 軸の単位を選択します。

X軸範囲 X 軸上で右クリックして自動スケールをチェックすると自動スケールになりま

す。チェックを外すと自動スケールでなくなり、X 軸の最小値と最大値が固定 になります。最小値または最大値を変更する場合は、マウスのポインタを変更 する数値の上に置き、クリックまたはダブルクリックすることで変更できます

ソキーでナローのファウザコケールをイー・ロギュトウザコケールにおいて

Y 軸上で右クリックして自動スケールをチェックすると自動スケールになります。チェックを外すと自動スケールでなくなり、Y 軸の最小値と最大値が固定になります。最小値または最大値を変更する場合は、マウスのポインタを変更する数値の上に置き、クリックまたはダブルクリックすることで変更できます。カーソル移動ツールです。ROI 設定の際、グラフ上のカーソルをマウスでドラ

カーソル検動ツールです。ROI 設定の際、クラフエのカーソルをマウスでトラ

ッグして移動できます。

ズーム。クリックすると以下の 6 種類のズームイン及びズームアウトを選択し

実行できます。

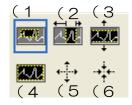


図 9 グラフ ズームイン及びズームアウトツール

(1) 四角形 ズームこのオプションを使用して、ズーム領域のコ

ーナーとするディスプレイ上の点をクリックし、四 角形がズーム領域を占めるまでツールをドラッグし

ます。

(2) X-ズーム X 軸に沿ってグラフの領域にズームイン

(3) Y-ズーム Y 軸に沿ってグラフの領域にズームイン

(4) フィットズーム 全てのX及びYスケールをグラフ上で自動スケール

(5) ポイントを中心にズームアウト ズームアウトする中心点をクリックします。

(6) ポイントを中心にズームイン ズームインする中心点をクリックします。

パンツール。プロットをつかんでグラフ上を移動可能です。

24

5. 6. ROI-SCA 機能

設定したエネルギー範囲(ROI)内に取得した波高値がある場合、その取得タイミングで AUX1 から AUX16 端子からパルス幅 1 µsec の TTL ロジック信号を出力することが可能です。

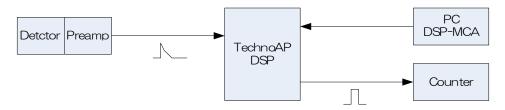


図 10 FAST-SCA 機能

histogram タブ内でROI CH と ROI start と ROI end を設定します。下図、赤色(SCA)の ROI1 から ROI16 の数字は、本機器フロントパネル上の AUX1 から AUX16 の端子に対応しています。 ROI CH に は入力 CH を選択します。 ROI start と ROI end は ROI の範囲を設定します。 単位は ch です。 設定後、メニューConfig をクリックすることで設定が本機器へ送信されます。

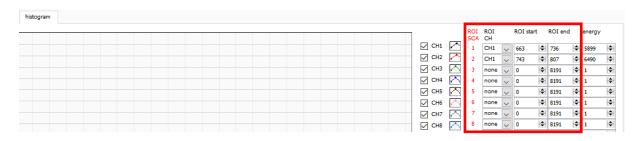


図 11 ROIの設定

出力したロジック信号は以下の通りです。

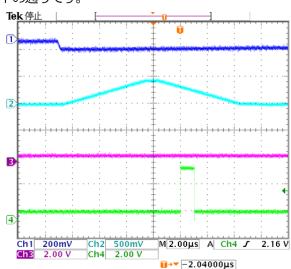
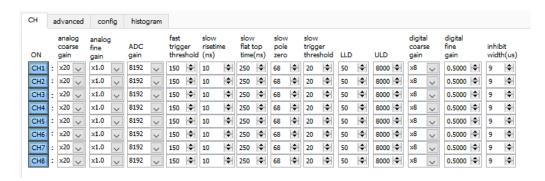


図 12 FAST-SCA 機能によるロジック信号出力

※オシロ CH1:プリアンプ出力信号、CH2:slow、CH4:AUX 端子出力信号


6. 初期設定

6.1. 電源と接続

- (1) 全ての機器の電源をOFFにします。
- (2) フロントパネル上LAN コネクタとPC をLAN ケーブルで接続します。
- (3) スイッチングハブを使用の場合はONにします。
- (4) 本機器の電源をONにします。
- (5) PCの電源をONにします。
- (6) フロントパネル上のCH1 端子とプリアンプ出力信号を接続します。
- (7) フロントパネル上のMONI端子とオシロスコープを接続します。

6. 2. 設定実行

- (1) 本アプリを起動します。
- (2) CHタブ、advancedタブ、config タブ等の設定をします。

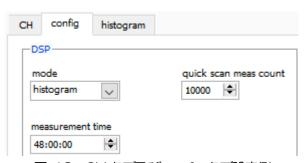


図 13 CH タブ及び config タブ設定例

(3) メニューConfig をクリックし、全設定を行います。

6.3. プリアンプ出力信号のアナログ入力レンジの確認

本装置に搭載されている ADC のアナログ入力レンジは、回路のグランドレベルを中心に 4Vpp となっております。このレンジが計測対象の X線のエネルギー帯に対応する信号の波高値をカバーしているかをフロントパネルの MONI 端子出力によって確認します。

- (1) 本アプリにて、DAC monitor CH を CH1、DAC monitor を pre amp と設定します。
- (2) CH1 端子に Mn-K α (5.9keV) などエネルギーが既知の信号を入力します。
- (3) MONI 端子から出力されているアナログ信号をオシロスコープで確認し、パルスの波高値を計測します。
- (4) 入力信号のX線エネルギーEx、計測した信号の波高値 Vh(V) と本装置のエネルギーレンジ Emax には、次式が成り立ちます。

 $Emax = Ex \times 2/Vh$

例えば、Mn の蛍光 X 線の検出器信号を本装置へ入力し、 $K\alpha$ 線(5.9keV)に対応するパルスの波高値が 200mV であった場合、最大エネルギーレンジは 59keV となります。

(5) また、CH タブの analog coarse gain を切り替える事により Vh が変動するため、エネルギーレンジを変更する事ができます。

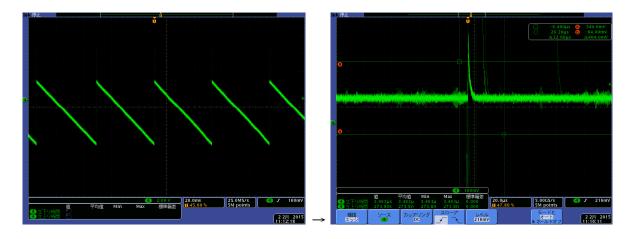


図 14 左側:トランジスタリセット型プリアンプ出力信号、右側:MONI端子からの preamp 信号

6. 4. advanced タブの coupling を Hi-count Mode で計測する場合

CH1 への入力例として、下記の設定を行います。

- (1) CH タブ内 CH1 の analog coarse gain を×1.0 にします。
- (2) advance タブ内 CH1 の proceccing mode を Hi-count にします。
- (3) CH タブの DAC monitor CH を CH1、DAC monitor を pre amp と設定します。
- (4) CH1 端子へ検出器からのプリアンプ出力信号を入力します。
- (5) MONI 端子から出力された信号をオシロスコープで観測します。観測された信号が±2V になるように advanced タブ内 CH1 の analog fine gain を調整します。

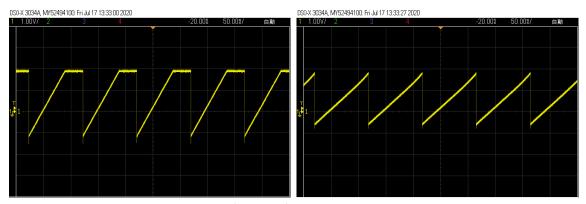


図 15 左側:トランジスタリセット型プリアンプ出力信号、±2V 以上に振れのこぎり波が正しく入力できていない。右側:analog fine gain を調整しサチレーションすることなく±2V 以内で入力できている。

6. 5. FAST 系フィルタ (時間取得用) フィルタの設定

本機器には、放射線検知時の時間情報を得るための FAST 系フィルタと、エネルギー(波高)を取得する ための SLOW 系のフィルタがあります。まず FAST 系のフィルタ関連の設定をします。設定は、一般的 なタイミングフィルタアンプと同じような特性があります。

下図の水色の波形は、FAST 系微分 fast diff を 200ns、FAST 系積分 fast integral を 200ns に設定した場合の波形です。

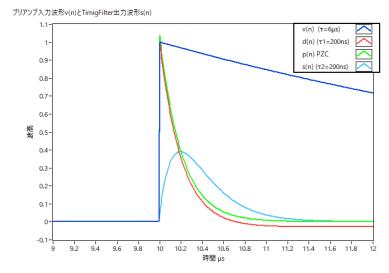
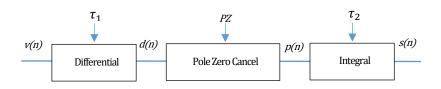



図 16 FAST 系フィルタ (水色)

$$d(n) = v(n) - v(n-1) + \tau_1 * d(n-1),$$

$$p(n) = v(n) * PZ + d(n),$$

$$s(n) = (1 - \tau_2) * p(n) + \tau_2 * s(n-1),$$

Where:

 τ_1 : differential time,

 τ_2 : integral time

PZ: polezero

図 17 FAST 系フィルタブロック図及び数式

CH1 への入力例として、下記の設定を行います。

- (1) CH タブの DAC monitor CH を CH1、DAC monitor type を fast と設定します。
- (2) 本機器のMONI 端子からの fast 系フィルタ信号をオシロスコープで確認します。
- (3) advanced タブ内 CH1 の fast diff と fast integral を 20 または 50 に設定してパルス状のフィルタ信号が出力されていることを確認します。

6. 6. SLOW 系フィルタの設定

プリアンプ出力信号に対しSLOW 系の台形整形を行ないます。台形フィルタ(Trapezoidal Filter)のアルゴリズムとして、パイプラインアーキテクチャで構成されたフィルタブロックは、台形フィルタに必要な遅延・加減算・積分といった値を、ADC の 100MHz のクロックに同期して演算します。

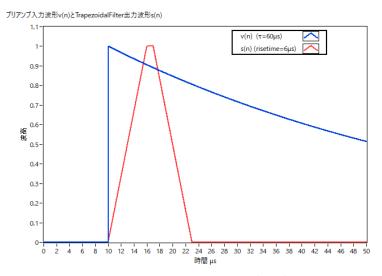
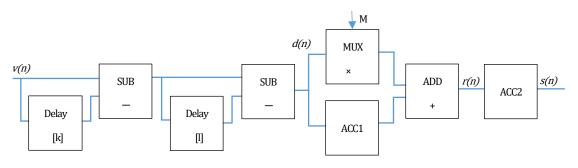



図 18 SLOW 系フィルタ (赤色)

$$d(n) = v(n) - v(n-k) - v(n-l) + v(n-k-l),$$

$$p(n) = p(n-1) + d(n),$$

$$r(n) = p(n) - M * d(n), \quad n \ge 0,$$

$$s(n) = s(n-1) + r(n), n \ge 0,$$

Where:

k: risetime,

l: risetime + flottoptime,

M: pole zero

References:

[1] V.T. Jordanov and G.F. Knoll, Nucl Instr.

and Meth.A353(1994)261-264

図 19 SLOW 系フィルタ (Trapezoidal Filter) ブロック図及び数式

下図に従来からあるアナログ Semi Gauss Filter のパルス応答の違いを示します。 Semi Gauss Filter に比べ、 DSP はピークまでの時間が約 1/2、パルス幅が約 1/3 と短いことがわかります。

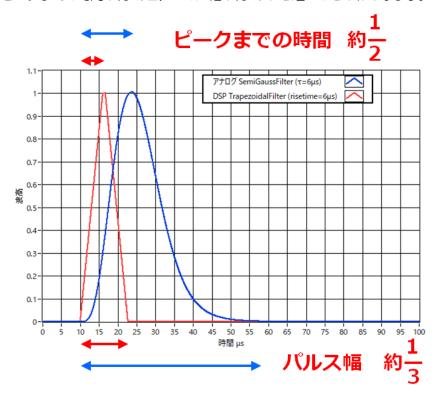


図 20 Trapezoidal Filter と Semi Gauss Filter の応答の違い

SLOW 系フィルタの設定を記載します。

- (1) MONI 端子をオシロスコープに接続し、DAC monitor CH を該当 CH に選択し、DAC monitor type を slow と設定します。オシロスコープにてその信号が見えるよう準備します。
- (2) リニアアンプのシェイピングタイムを 0.5 µs とした場合と同じ条件にするには、slow rise time を 800ns と設定します。この値はエネルギー分解能に影響します。短く設定するとより高計数計測が可能となりますが、エネルギー分解能が落ちます。逆に設定が長過ぎると計数がかせげないことがあります。デフォルト設定は 800ns です。
- (3) slow flattop time を設定します。デフォルト設定は300ns です。±100ns 刻みでエネルギー分解能(半値幅)を確認しながら調整します。
- (4) slow pole zero を設定します。この設定にてSLOW 系フィルタの立ち下がりの部分のオーバーシュートやアンダーショートを軽減することが可能です。デフォルト設定は65です。検出器によって異なりますのでオシロスコープにて最適な値に設定します。

図 21 slow pole zero 調整後

6. 7. SLOW 系スレッショルドの設定

まずある程度大きい値(100 程度)を入力して throughput rate(cps)を観測します。 slow trigger threshold を徐々に小さくし throughput rate(cps)が大きくなる値を見つけます。 その値が信号とノイズの境界なので、その値より+3~+10 程度に設定します。 デフォルト設定は 40 です。

7. 計測

7. 1. 設定

- (1) メニューConfig をクリックして全設定を本機器へ送信します。実行後、DSP 内ヒストグラムデータが初期化されます。
- (2) 前回の計測したヒストグラムや計測結果を初期化する場合はメニューClear をクリックします。 初期化せずにヒストグラムデータを継続する場合は、メニューClear をクリックせずに次の計測 を開始します。

7. 2. 計測開始

メニューStart をクリックします。計測が開始され、下記が実行されます。

- CH 部に CH 毎の計測状況が表示されます。
- acq LED が点滅します。
- measurement time に計測設定時間が表示されます。
- real time に本機器から取得した経過時間が表示されます。
- dead time に本機器から取得したデッドタイムが表示されます。
- dead time ratio に dead time / real time の割合(%)が表示されます。

7. 3. ヒストグラムモード

config タブ内 mode で histogram を選択して計測を開始した場合、下記が実行されます。

- mode Chistogram と表示されます。
- ROI 部に ROI1 から ROI8 毎の計算結果が表示されます。
- CH タブと histogram タブにヒストグラムが表示されます。

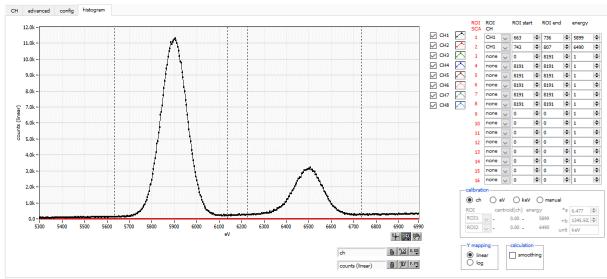


図 22 histogram モード計測

7. 4. クイックスキャンモード

- mode に quick scan と表示されます。
- 計測開始前はQSG端子への信号がOV(LOWレベル)である必要があります。
- メニュー Start をクリックし、acq. LED が点滅した状態になるとデータファイルを生成し、QSG 端子へのLVTTL の信号待ちとなります。
- QSG 端子へのLVTTL の立ち上がりエッジを検出してから High 状態の間 CH1 から CH8 のスペクトルデータ生成し、立ち下りエッジ検出後にデータを PC へ転送して、PC では読み出したデータをファイルへ保存します。立ち下がりエッジを検出する回数は、予め設定した quick scan meas, count の回数分となります。 QSG 端子への信号のパルス幅は、例えば 10ms 設定では、High 状態が 10ms 続き、その後Low 状態が最短 $10 \, \mu s$ としたものを $1 \, \Box$ (周期) とします。

7.5. 計測停止

- 計測中に停止する場合は、メニュー Stop をクリックします。実行後計測を停止します
- real time が measurement time に到達すると計測は終了します。
- 計測中に停止する場合は、メニューStopをクリックします。実行後計測を停止します。
- save LED が消灯します。
- real time の更新が停止します。
- quick scan モードでは、QSG 端子に入力された外部入力トリガーのネガティブエッジの数が予め設定した quick scan meas count に到達すると計測が停止します。

8. 終了

メニューFile - quit をクリックします。確認ダイアログが表示された後、quit ボタンをクリックすると本アプリは終了し、画面が消えます。次回起動時は、終了時の設定が反映されます。

9. ファイル

9. 1. ヒストグラムデータファイル

(1) ファイル形式

カンマ区切りの CSV テキスト形式

(2) ファイル名

任意

(3) 構成

Header 部、Calculation 部、Status 部および Data 部からなります

[Header]

Memo メモ

Measurement mode Real time

Measurement time 計測時間。単位は秒

Real time リアルタイム
Live time ライブタイム
Dead time デッドタイム
Start Time 計測解始日時
End Time 計測終了日時

CH of Module1 モジュール当たりの CH 数※以下 CH 毎に保存。設定項目にない設定も含まれます。

ACG アナログコースゲイン

ADG ADC ゲイン

FIT FAST 系ライズタイム

FDI FAST 系フラットトップタイム

SFR SLOW 系ライズタイム

SFP SLOW 系フラットトップタイム FPZ FAST 系ポールゼロキャンセル SPZ SLOW 系ポールゼロキャンセル

FTH FAST 系スレッショルド

LLDエネルギーLLDULDエネルギーULD

STH SLOW 系スレッショルド PUR パイルアップリジェクト

POL 極性

DCG デジタルコースゲイン デジタルファインゲイン

TMS タイミング選択

CFF CFD ファンクション

CFD CFD ディレイ

IHW インヒビット幅

PZD アナログオフセット

FGD カップリング

DIF アナログファインゲイン

※CH毎はここまで

MMD 計測モード MTM 計測時間

[Calculation]

※以下 ROI 毎に保存

ROLch ROLの対象となった入力チャンネル番号

ROLend ROL 解的位置(ch)
ROLend ROL 解了位置(ch)

peak(ch) ROI 間のピーク位置(ch) centroid(ch) ROI 間の中心位置(ch)

gross(count) ROI 間のカウント数の総和

net(count) ROI間のバックグラウンドを差し引いたカウント数の総和

FWHM (ch) ROI 間の半値幅(ch) ROI 間の半値幅

Energy ROI間のピークのエネルギー値

[Status]

※以下 CH 毎に保存

input total count トータルカウント
throughput count スループットカウント
input total rate トータルカウントレート
throughput rate スループットカウントレート

dead time ratio デッドタイム割合

[Data]

各チャンネルのヒストグラムデータ。 最大8192点。

9. 2. クイックスキャンデータファイル

(1) ファイル形式 バイナリ形式、ビッグエンディアンまたはリトルエンディアン。 計測前に、config タブの byte order により選択が可能です。

- (2) ファイル名 config タブ内 quick scan file path に設定したファイルパスになります。
- (3) 構成 スキャン毎のデータが順に格納されます。 1 スキャンあたりのデータ構成は下図のようになります。

図 23 クイックスキャンデータファイル構造

- ① インデックス部 固定2バイト
- ② スペクトルデータ部:8CH分のスペクトルデータ
 - スペクトル1チャネル(ビン)当たりのバイト数は、 quick scan データ数32bit バイト固定の4バイト
 - スペクトルのチャネル (ビン) 数は ADC ゲインの値に依存
- ③ インプットレート部: 8CH 分のインプットレート値 1CH あたり固定4 バイト
- 1 スキャンあたりのデータサイズ例

例2: quick scan データ数32bit、ADC ゲインが8192 の場合 262178 バイト = 2 バイト + 8192 チャネル×4 バイト×8CH + 4 バイト×8CH

10. トラブルシューティング

10.1.接続エラーが発生する。

起動時またはメニューconfig にて connection error エラーがする場合、ネットワークが正しく接続されていない可能性があります。この場合、以下を確認します。

(1) 起動前の構成ファイル config.ini 内 P が 192.168.10.128 と設定され、[System] セクションの各ポート番号が下記のとおり定義されており、本アプリを起動して P Address の表示が同じあることを確認します。

[System]

PCConfigPort = 55000

PCStatusPort = 55001

PCDataPort = 55002

DevConfigPort =4660

DevStatusPort = 5001

DevDataPort = 24

SubnetMask = "255,255,255.0"

Gateway = "192,168,10,1"

(2) PC のネットワーク情報が本機器と接続できる設定かどうかを確認します。本機器のデフォルト設定は以下の通りです。

Pアドレス 192,168,10,128

サブネットマスク 255.255.255.0

デフォルトゲートウェイ 192,168,10,1

- (3) UDP 接続用の PC 側の任意ポート番号が競合している。この場合は起動前の構成ファイル config.ini 内 Port に別の番号を定義します。
- (4) イーサネットケーブルが接続されている状態で電源をONにします。
- (5) コマンドプロンプトにて ping コマンドを実行し本機器と PC が通信できるかを確認します。
- (6) 本機器の電源を入れ直し、再度 ping コマンドを実行します。
- (7) ウィルス検出ソフトやファイヤーフォールソフトをOFF にします。
- (8) PC のスリープなどの省電力機能を常に ON にします。
- (9) ノートPC などの場合、無線LAN 機能を無効にします。

10.2. コマンドエラーが発生する

オプションの有無などによる、本機器のファームウェアとアプリケーションの組み合わせがあっていない 場合があります。弊社までお問い合わせください。

10.3. ヒストグラムが表示されない

メニューStart を実行しても histogram タブのグラフに何も表示されない場合、以下の点を確認します。

- (1) histogram タブ内 plot ON にて CH1 を ON に設定します。
- (2) input total rate(cps)とthroughput rate(cps)がカウントしているか確認します。
- (3) DAC monitor CH を CH1 に、DAC monitor type を pre amp にして、preamp の波高が小さすぎたり大きすぎたりせず、2V (1MΩ 終端時以内位出ているかを確認します。
- (4) DAC monitor type を fast にして FAST 系フィルタの信号が出力されているかを確認します。
- (5) DAC monitor type を slow にして SLOW 系フィルタの信号が出力されているかを確認します。
- (6) fast trigger threshold や slow trigger threshold の値が小さすぎたり大きすぎたりせず、 input total rate(cps)と throughput rate(cps)のカウントを見ながら、100 から30 くらいまで設定を下げながら変更していき、2 つの rate が近いカウントになるように調整します。
- (7) グラフのX軸とY軸を右クリックしてオートスケールにします。

10.4. IPアドレスを変更したい

別添の「取扱説明書 APG5107 搭載製品 IP アドレス変更方法」を参照してください。添付無き場合は弊社までお問い合わせください。

株式会社テクノエーピー

住所: 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL: 029-350-8011 FAX: 029-352-9013

URL: http://www.techno-ap.com e-mail: info@techno-ap.com