# デジタルパルスプロセッサ

# APU8101H

# 取扱説明書

第1.0.1版 2025年4月

株式会社 テクノエーピー 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail: info@techno-ap.com

#### 安全上の注意・免責事項

このたびは株式会社テクノエーピー(以下、弊社)の製品をご購入いただき誠にありがとうございます。 ご使用の前に、この「安全上の注意・免責事項」をお読みの上、内容を必ずお守りいただき、正しくご使 用ください。

弊社製品のご使用によって発生した事故であっても、装置・検出器・接続機器・アプリケーションの異常、 故障に対する損害、その他二次的な損害を含む全ての損害について、弊社は一切責任を負いません。

# 🚫 禁止事項

- 人命、事故に関わる特別な品質、信頼性が要求される用途にはご使用できません。
- 高温、高湿度、振動の多い場所などでのご使用はご遠慮ください(対策品は除きます)。
- ・ 定格を超える電源を加えないでください。
- 基板製品は、基板表面に他の金属が接触した状態で電源を入れないでください。

# <u>注意事項</u>

- 発煙や異常な発熱があった場合はすぐに電源を切ってください。
- ノイズの多い環境では正しく動作しないことがあります。
- 静電気にはご注意ください。
- 製品の仕様や関連書類の内容は、予告無しに変更する場合があります。

## 保証条件

「当社製品」の保証条件は次のとおりです。

- ・ 保証期間 ご購入後一律1年間といたします。
- ・ 保証内容 保証期間内で使用中に故障した場合、修理または交換を行います。
- ・ 保証対象外 故障原因が次のいずれかに該当する場合は、保証いたしません。
  - (ア)「当社製品」本来の使い方以外のご利用
  - (イ) 上記のほか「当社」または「当社製品」以外の原因(天災等の不可抗力を含む)
  - (ウ) 消耗品等

一目次一

| 1. |    | 概要                         | 5  |
|----|----|----------------------------|----|
| 1. | 1. | 概要                         | 5  |
| 1. | 2. | 特徵                         | 6  |
| 2. |    | 仕様                         | 7  |
| З. |    | 外観                         |    |
| 4. |    | セットアップ                     |    |
| 4. | 1. | アプリケーションのインストール            |    |
| 4. | 2. | 高圧電源極性の確認                  |    |
| 4. | З. | ケーブル接続                     |    |
| 4. | 4. | 接続                         |    |
| 4. | 5. | ネットワークのセットアップ              |    |
| 5. |    | アプリケーション画面                 | 14 |
| 5. | 1. | 起動画面                       |    |
| 5. | 2. | Device タブ                  |    |
| 5. | 2. | 1. (オプション) PSA 部           |    |
| 5. | 2. | 2. (オプション) LIST-WAVE 部     |    |
| 5. | 2. | 3. (オプション)pile up reject 部 |    |
| 5. | З. | meas タブ                    |    |
| 5. | 4. | file タブ                    |    |
| 5. | 5. | calibration タブ             | 31 |
| 5. | 6. | HV タブ                      |    |
| 5. | 7. | wave タブ                    |    |
| 6. |    | 初期設定                       |    |
| 6. | 1. | 接続と電源                      |    |
| 6. | 2. | 高圧電源印加                     |    |
| 6. | З. | 検出器出力信号の確認                 |    |
| 6. | 4. | 外部入力コネクタによる信号処理            |    |
| 6. | 5. | GATE 信号によるデータ取得            |    |
| 6. | 6. | 外部 CLR の使用                 |    |
| 7. |    | 言十則                        |    |
| 7. | 1. | ヒストグラムモード                  |    |
| 7. | 1. | 1. 環境                      |    |
| 7. | 1. | 2. 電源と接続                   |    |
| 7. | 1. | 3. アプリケーション起動及び設定          |    |
| 7. | 1. | 4. 波形確認                    | 41 |
| 7. | 1. | 5. 計測開始                    | 43 |
| 7. | 1. | 6. 計測終了                    |    |

| 7. | 2.  |         | リストモード                           |    |
|----|-----|---------|----------------------------------|----|
| 7. | 2.  | 1.      | 準備                               |    |
| 7. | 2.  | 2.      | エネルギースペクトルの確認                    |    |
| 7. | 2.  | З.      | 設定                               |    |
| 7. | 2.  | 4.      | 計測開始                             |    |
| 7. | 2.  | 5.      | 計測終了                             |    |
| 7. | З.  |         | (オプション) PSD モード                  |    |
| 7. | З.  | 1.      | 準備                               |    |
| 7. | З.  | 2.      | 入力波形の確認                          |    |
| 7. | З.  | З.      | エネルギースペクトルの確認                    |    |
| 7. | З.  | 4.      | 設定                               |    |
| 7. | З.  | 5.      | 計測開始                             |    |
| 7. | З.  | 6.      | 計測終了                             |    |
| 8. |     | 終了      | 7                                |    |
| 9. |     | ファ      | ッイル                              |    |
| 9. | 1.  |         | ヒストグラムデータファイル                    |    |
| 9. | 2.  |         | 波形データファイル                        |    |
| 9. | З.  |         | リストデータファイル                       |    |
| 9. | 4.  |         | (オプション)リスト波形及びリストパイルアップ波形データファイル |    |
| 9. | 5.  |         | (オプション)PSD データファイル               |    |
| 10 | ).  | Т       | -001機能                           |    |
| 11 | •   | ł       | ~ラブルシューティング                      |    |
| 11 | . 1 | •       | 接続エラーが発生する。                      |    |
| 11 | . 2 | )<br>-• | コマンドエラーが発生する                     |    |
| 11 | . 3 | 3.      | ヒストグラムが表示されない                    | 61 |
| 11 | . 4 | L.      | Pアドレスを変更したい                      | 61 |

#### 1. 概要

#### 1.1. 概要

テクノエーピー社製 DPP(Digital Pulse Processor、デジタルパルスプロセッサ)製品 APU8101H (以下、本機器)は、高速・高分解能 ADC(1GHz, 14bit)を 1CH 搭載した波形解析ボードです。

FPGA による 1GHz リアルタイムの解析に加え、信号処理によるデッドタイムの無い高速処理を、高時間分解能・高スループットで実現しています。高速なシンチレーション検出器からの信号解析などにもご利用いただけます。

本書は、本機器について説明するものです。

- ※ 文章中、信号入力のチャンネルは"CH"、ビン数を表すチャネルは"ch"と大文字小文字を区別してあります。
- ※ 文章中の、"リスト"と"イベント"は同意義です。
- ※ 本機器にはオプションとして機能を追加することが可能です。本書ではその機能部分を(オプション)と明記します。
- ※ 本書の記載内容は予告なく変更することがあります。

#### 1.2. 特徴

主な特徴は下記の通りです。

- 用途例としては、高速タイミング、高時間分解能、高計数、波形弁別、粒子弁別(n/γ)。
- 対象検出器としては、シンチレータ(プラスチック、LaBr<sub>3</sub>(Ce)、液体シンチレータ等)、ワイヤー チェンバーや MPPC などで、光電子増倍管(PMT)からの出力信号や FAST-NIM 信号などを直接 入力可能です。
- デジタルパルスプロセッサ(以下、DPP)がデジタル CFD、QDC によって時間情報とエネルギー 情報を取得。
- 波形フィットによりサンプリング内挿をもとめ高い時間分解能を実現。
- ・ オプションで中性子/ガンマ線弁別 PSD 機能や波形情報 LIST-WAVE など追加可能。
- ・ ギガビットイーサネット (TCP/IP) によるデータ収録。



DPP への設定やデータの取得は、付属の DPP アプリケーション(以下本アプリ)で行います。本アプリ は Windows 上で動作します。付属アプリ以外にも、コマンドマニュアルを元にプログラミングすること も可能です。DPP との通信は TCP/IP や UDP でのネットワーク通信のみため、特別なライブラリは使用 せず、Windows 以外の環境でもご使用頂けます。

# 2. 仕様

| (1) アナログ入力     |                                                           |
|----------------|-----------------------------------------------------------|
| ・チャネル数         | 1CH                                                       |
| ・入力レンジ         | $\pm 1 \vee$                                              |
| ・入力インピーダンス     | 50Ω                                                       |
| ・コースゲイン        | x0.5、x 1、x 1.5、x 2、x 2.5                                  |
| ・入力信号立ち上がり時間   | 1ns以下                                                     |
| (2) ADC        |                                                           |
| ・サンプリング周波数     | 1GHz                                                      |
| • 分解能          | 14bit                                                     |
| • SNR          | 68.3dBFS@605MHz                                           |
| (3) 性能         |                                                           |
| ・QDC アウトプット    | 2Mcps以上                                                   |
| •時間分解能         | 3.90625ps                                                 |
| (4) 機能         |                                                           |
| ・動作モード         | ヒストグラムモード、リストモード(時間ヒストグラム)、波形モー<br>ド                      |
| ・イベント転送レート     | 約 20MByte/秒。1 イベント 16Byte(128Bit)の場合。                     |
| (5) オプション      |                                                           |
| • 機能           | PSD2次元ヒストグラム、波形リストモード、パイルアップ波形リス<br>トモード                  |
| (6) 通信インターフェース |                                                           |
| • LAN          | TCP/IP Gigabit Ethernet 1000Base-T、データ転送用<br>UDP コマンド送受信用 |
| (7) 消費電流       |                                                           |
| +12V           | 0.8A(最大)                                                  |
| (8) 形状         |                                                           |
| ・ユニット型         | APU8101H                                                  |
| (9) 外径寸法       |                                                           |
| • APU8101H     | 150 (W) x 40 (H) x 100[※130] (D) mm (※突起物含む)              |
| (10)重量         |                                                           |
| • APU8101H     | 約310g                                                     |
| (11)PC環境       |                                                           |
| •OS            | Windows 7 以降、32bit 及び 64bit 以降                            |

• ネットワークインターフェース

• 画面解像度

# 3. 外観



写真 2 APU8101H (背面)

| (1)   | POWER  | 本機器の主電源スイッチ。「O」側が OFF、「 I」側が ON。          |
|-------|--------|-------------------------------------------|
| (2)   | LED    | POW(緑色)は電源ON時点灯、HV(赤色)はHV出力時点灯、           |
|       |        | EM(橙色)は緊急(EMERGENCY)用HV停止時点灯。             |
| (3)   | EM-OFF | 緊急(EMERGENCY)用 HV 停止ボタンです。PC と通信ができな      |
|       |        | くなってしまった場合などの緊急用に設けております。緊急時に高電           |
|       |        | 圧を OFF にしたい場合に 3 秒以上長押ししてください。sweep       |
|       |        | voltage のレート(V/min)に従い、降圧していきます。HV LED が全 |
|       |        | 消灯すれば高電圧が 400V 以下になったことを確認できます。(エマ        |
|       |        | ージェンシー状態を解除したい場合には高電圧が十分に下がっている           |
|       |        | 状態でアプリ終了→本体電源 OFF→1 分以上待つ→電源 ON→アプリ       |
|       |        | 起動でのみ解除になります)。                            |
| (4)   | AUX1   | 外部ゲート(GATE)信号入力用 LEMO 社製 00.250 互換コネク     |
|       |        | タ。LVTTL または TTL 信号を入力します。入力が High の間データ   |
|       |        | の取得を有効にします。                               |
| (5)   | AUX2   | 外部クリア(CLR)信号入力用 LEMO 社製 00.250 互換コネクタ。    |
|       |        | LVTTL または TTL ロジック信号を入力します。High の立ち上がり    |
|       |        | エッジでイベント検知時の時間情報であるカウンタデータをクリアレ           |
|       |        | ます。                                       |
| (6)   | I AN   | イーサネットケーブル用 BJ45 コネクタ。1000Base-T。         |
| (7)   |        | 信号入力用   FMO 社製 00 250 万換 コネクタ、入力レンジは+1V.  |
| ~ • / |        | 入力インピーダンスは50Ω。                            |

(8) HV-OUT(HV) 高電圧出力用 SHV コネクタ。出力インピーダンスは約 10kΩ。
 ※高電圧出力中や電源 ON の状態でのケーブル抜き差しは、本機器だけでなく検出器側も破損する恐れがありますので絶対にやめ

てください。

(9) DC-IN+12V (ユニット型)電源入力プラグです。付属のACアダプタを接続します。下写真のように、付付属のACアダプタねじ込み式プラグをご使用ください。



写真3 ねじ込み式プラグ

## 4. セットアップ

## 4.1. アプリケーションのインストール

本アプリはWindows上で動作します。ご使用の際は、使用するPCに本アプリのEXE(実行形式)ファ イルとNational Instruments 社のLabVIEW ランタイムエンジンをインストールする必要があります。 本アプリのインストールは、付属 CD に収録されているインストーラによって行います。インストーラに は、EXE(実行形式)ファイルとLabVIEW のランタイムエンジンが含まれており、同時にインストール ができます。インストール手順は以下の通りです。

(1) 管理者権限で Windows ヘログインします。

付属 CD-ROM 内 Application フォルダ内の setup.exe を実行します。対話形式でインストールを進めます。デフォルトのインストール先は"Ci¥TechnoAP"です。このフォルダに、本アプリの実行形式ファイルと設定値が保存された構成ファイル config.ini がインストールされます。

(2) スタートボタン - TechnoAP-APP-MEAS を実行します。

尚、アンインストールはプログラムの追加と削除から本アプリを選択して削除します。

#### 4.2. 高圧電源極性の確認

ご使用になる前に、対象の検出器と本機器の極性があっていることを確認します。

※注意※

検出器の仕様と異なる極性で、決して高圧電源を印加しないでください。検出器及び本機器の故障の原因 となります。

#### 4.3. ケーブル接続

本機器による計測を行うために必要な、基本的なケーブル接続図を以下に記載します。 全ての電源がOFFの状態で、接続図と以下の手順に従い接続を行ってください。



凶乙按心凶

- (1) 本機器の電源がOFF になっていることを確認します。
- (2) 予め本機器と検出器の高圧電源の極性が一致していることを確認した後、HV-OUT 出力コネクタ と、検出器側の高圧電源用 SHV コネクタを高圧電源用ケーブルにて接続します。
- (3) POWER 出力コネクタと検出器側プリアンプ用電源コネクタをケーブルにて接続します。
- (4) INPUT 入力コネクタと検出器側プリアンプ出力信号コネクタをケーブルにて接続します。
- (5) LAN コネクタとPC 側LAN コネクタをLAN ケーブルにて接続します。
- (6) 付属のAC アダプタの先端の丸いコネクタとDC-IN コネクタを接続します。

#### 4.4. 接続

本機器とPCをイーサネットケーブルで接続します。PCによってはクロスケーブルをご使用ください。 ハブを使用する場合はスイッチングハブをご使用ください。

#### 4.5. ネットワークのセットアップ

本機器と本アプリの通信状態を下記の手順で確認します。

- (1) PCの電源をONにし、PCのネットワーク情報を変更します。以下は変更例です。
   IPアドレス 192.168.10.2 ※本機器割り当て以外のアドレス
   サブネットマスク 255.255.255.0
   デフォルトゲートウェイ 192.168.10.1
- (2) 本機器の電源をONにします。電源投入後10秒程待ちます。
- (3) PC と本機器の通信状態を確認します。Windows のコマンドプロンプトにて ping コマンドを実行し、本機器と PC が接続できるかを確認します。本機器の IP アドレスは基板上またはユニットの背面にあります。

```
Pアドレス モジュールの底面を参照サブネットマスク 255.255.255.0デフォルトゲートウェイ 192.168.10.1
```

> ping 192.168.10.128

| C:¥WINDOWS¥system32¥cmd.exe                                                                                                                                                             | _                                                     |                                                   | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---|
| Microsoft Windows [Version 10.0.19042.1083]<br>(c) Microsoft Corporation. All rights reserve                                                                                            | :d.                                                   |                                                   | ^ |
| C:¥Users¥Administrator>ping 192.168.10.128                                                                                                                                              |                                                       |                                                   |   |
| 192.168.10.128(こ ping を送信しています 32 バ<br>192.168.10.128 からの応答: バイト数 =32 時間<br>192.168.10.128 からの応答: バイト数 =32 時間<br>192.168.10.128 からの応答: バイト数 =32 時間<br>192.168.10.128 からの応答: バイト数 =32 時間 | イトの<br><1ms T<br><1ms T<br><1ms T<br><1ms T<br><1ms T | データ:<br>TL=32<br>TL=32<br>TL=32<br>TL=32<br>TL=32 |   |
| 192.168.10.128 の ping 統計:<br>パケット数: 送信 = 4、受信 = 4、損失 = 0<br>ラウンド トリップの概算時間 (ミリ秒):<br>最小 = Oms、最大 = Oms、平均 = Oms                                                                         | (0% の)                                                | 損失)、                                              |   |
| C:¥Users¥Administrator>                                                                                                                                                                 |                                                       |                                                   | ~ |

図3 通信接続確認 ping コマンド実行

 (4) 本アプリを起動します。デスクトップ上のショートカットアイコン APP-MEAS または Windows ボタンから APP-MEAS 検索して起動します。
 本アプリを起動した時に、本機器との接続に失敗した内容のエラーメッセージが表示される場合
 は、後述のトラブルシューティングを参照ください。

# 5. アプリケーション画面

## 5.1. 起動画面

#### 本アプリを実行すると、以下の起動画面が表示されます。

| APP-MEAS Version5.2.0<br>File Edit Window Graph Tool Clear Start Stop                                               |                       |                   |               |                   |                 |                  |                |                |              |              |             |               |               |                         | -        |             |
|---------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------|-------------------|-----------------|------------------|----------------|----------------|--------------|--------------|-------------|---------------|---------------|-------------------------|----------|-------------|
| nodel APU8101H memo Test                                                                                            |                       |                   |               |                   |                 |                  |                |                | HV           | off          | acq.        | save          | error         | mode                    |          | histogram   |
| CH Output Output                                                                                                    | dead time             | ROI<br>ROI<br>No. | peak<br>(keV) | centroid<br>(keV) | peak<br>(count) | gross<br>(count) | gross<br>(cps) | net<br>(count) | net<br>(cps) | FWHM<br>(ch) | FWHM<br>(%) | FWHM<br>(keV) | FWTM<br>(keV) | meas. mod<br>meas. time | de<br>B  | 781:00:00   |
| 1 0.000 0.000                                                                                                       | 0.0                   | ROI1 :            | 0.00          | 0.00              | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000         | 0.000         | data file siz           | ze(byte) | 0.000       |
|                                                                                                                     |                       | ROI2 :            | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | meas. cour              | nt       | 1/ 1        |
|                                                                                                                     |                       | RO13 .<br>RO14 :  | 0.00          | 0.00              | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000         | 0.000         | HV status               |          | shutdown    |
|                                                                                                                     |                       | ROI5 :            | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | set volt                | tage(V)  | sweep(V/min |
|                                                                                                                     |                       | ROI6 :            | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | step1 :                 | 20 V     | 600 V/min   |
|                                                                                                                     |                       | ROI7 :            | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | step2 :                 | ov       | 0 V/min     |
|                                                                                                                     |                       | R018 :            | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | Scops .                 |          |             |
| Device meas file calibration HV WAVE                                                                                |                       | 1.0-              |               |                   | 1               |                  |                |                | 1            |              |             |               |               |                         | 1        |             |
| APU8101H                                                                                                            |                       | 900.0m-           |               | 1                 |                 |                  |                |                |              |              |             |               |               |                         |          |             |
| config baseline bir                                                                                                 |                       | 800.0m-           |               |                   |                 |                  |                |                |              |              |             |               |               |                         |          |             |
| polarity GAIN filter(us) (digit) (digit)                                                                            |                       | 600.0m-           |               |                   |                 |                  |                |                |              |              |             |               |               |                         |          |             |
| neg 🧹 x2.0 🗸 Fast 🗸 7870 🌲 35 🌲                                                                                     |                       | 500.0m-           |               |                   |                 |                  |                |                |              |              |             |               |               |                         |          |             |
| CFD CFD CFD CFD timing function delay walk QDC                                                                      |                       | 400.0m-           |               |                   |                 |                  |                |                |              |              |             |               |               |                         | -        |             |
| type (multiple) (digit) (digit) sum/p                                                                               | ak                    | 300.0m-           |               | 1                 |                 |                  |                | - 1            |              |              |             |               |               |                         |          |             |
|                                                                                                                     | ~                     | 200.0m-           |               |                   | 1               |                  |                |                |              |              |             |               |               |                         |          |             |
| pretrigger filter integral full scale LLD ULD                                                                       |                       | 월 100.0m-         |               |                   |                 |                  |                |                |              |              |             |               |               |                         |          |             |
| (ns) (ns) range(ns) (multiple) (digit) (digit)<br>-16ns ↓ 10ns ↓ 160 ♠ 1/64 ↓ 20 ♠ 8000                             | •                     | 5 0.0-            |               | 1                 |                 |                  |                |                |              |              |             |               |               |                         |          |             |
|                                                                                                                     |                       | -200.0m-          |               |                   |                 |                  |                | !              |              |              |             |               |               |                         |          |             |
| rise fall total PSA                                                                                                 | cala                  | -300.0m-          |               |                   |                 |                  |                | - !            |              |              |             |               |               | 1                       |          |             |
| (digit) (digit) (digit) (digit) (digit) (mu                                                                         | tiple)                | -400.0m-          |               |                   |                 |                  |                | 1              | 1            |              |             |               |               | 1                       |          |             |
| <u>4</u>   <b>0</b>   11   <b>0</b>   5   <b>0</b>   5   <b>0</b>   5   <b>0</b>   1/1                              | $\mathbf{\mathbf{x}}$ | -500.0m-          |               |                   |                 |                  |                | 1              |              |              |             |               |               |                         |          |             |
| LIST-WAVE pileup reject                                                                                             | 1                     | -600.0m-          |               | 1                 |                 |                  |                | 1              |              |              |             |               |               | 1                       |          |             |
| list-wave list-wave pileup pileup pileup<br>delay data reject peak judge num<br>(digit) (ns) enable (digit) (digit) |                       | -700.0m-          |               | 1                 |                 |                  |                | 1              |              |              |             |               |               |                         |          |             |
|                                                                                                                     |                       | -800.0m-          |               |                   |                 |                  |                | 1              |              |              |             |               |               |                         |          |             |
|                                                                                                                     |                       | -900.001-         |               | 1                 |                 |                  |                | 1              |              |              |             |               |               | 1                       |          |             |
| mode IP address                                                                                                     | _                     | -2                | 21 -1         | 0- 0              | 100 200         | o 300 -          | 400 500        | 600 7          | 00 800       | 900          | 1000 110    | 0 1200        | 1300 140      | 0 1500 1                | 1600 1   | 1816        |
| nist v 192.168.10.130 PSD ON/O                                                                                      | F                     | 1                 | keV           | 6 1X 8.85         | counts          | B 11 1.11        |                |                | keV          |              |             |               |               |                         |          | + 🔍 🕐       |



メニュー

| File – open config       | 設定ファイルの読み込み。                   |
|--------------------------|--------------------------------|
| File – open histogram    | ヒストグラムデータファイルの読み込み。            |
| File - open wave         | wave データファイルの読み込み。             |
| File – open PSD          | PSD2 次元グラフ用CSV データファイルの読み込み。   |
| File – open list for PSD | PSD2 次元グラフ用リストデータファイルの読み込み。    |
| File - save config       | 現在の設定をファイルに保存。                 |
| File – save histogram    | 現在のヒストグラムデータをファイルに保存。          |
| File - save wave         | 現在の波形データをファイルに保存。              |
| File - save PSD          | PSD2 次元グラフ用 CSV データファイルの保存。    |
| File - save image        | 本アプリ画面をPNG 形式画像で保存。            |
| File - quit              | 本アプリ終了。                        |
| Edit - IP configuration  | 本機器のIPアドレスを変更。(DIPPスイッチの変更が必要) |
| Graph – histogram        | ヒストグラムグラフを表示。                  |
| Graph - wave             | wave グラフを表示。                   |
| Tool                     | 別紙 tool 編を参照。                  |
|                          |                                |

取扱説明書 APU8101H

| Clear | 本機器内のヒストグラムデータを初期化。 |
|-------|---------------------|
| Start | 本機器へ計測開始。           |
| Stop  | 本機器へ計測停止。           |

#### • 画面最上行

| model     | APU8101H を表示                              |
|-----------|-------------------------------------------|
| memo      | 任意テキストボックス。計測データ管理用にご使用ください               |
| HV LED    | 出力電圧が30V以上の時にHV on 表示になり点灯。掃引時はHV sweep 表 |
|           | 示になり点滅。出力停止中は HV off 表示で消灯                |
| acq. LED  | 計測中に点滅                                    |
| save LED  | データ保存時に点灯                                 |
| error LED | エラー発生時点灯                                  |
|           |                                           |

•CH部

| output count       | 信号処理した総カウント数          |
|--------------------|-----------------------|
| output rate(cps)   | 1 秒間あたりの output count |
| dead time ratio(%) | デッドタイム割合              |

•ROI部

| ROI間の算出結果を表示します。 |                                                   |  |  |  |  |
|------------------|---------------------------------------------------|--|--|--|--|
| peak(ch)         | 最大カウントのch                                         |  |  |  |  |
| centroid(ch)     | 全カウントの総和から算出される中心値(ch)                            |  |  |  |  |
| peak(count)      | 最大カウント                                            |  |  |  |  |
| gross(count)     | ROI間のカウントの総和                                      |  |  |  |  |
| gross(cps)       | 1 秒間当たりの gross (count)                            |  |  |  |  |
| net(count)       | ROI間のバックグラウンドを差し引いたカウントの総和                        |  |  |  |  |
| net(cps)         | 1 秒間当たりの net(count)                               |  |  |  |  |
| FWHM(ch)         | 半值幅(ch)                                           |  |  |  |  |
| FWHM(%)          | 半値幅(%)。半値幅:ROI定義エネルギー×100                         |  |  |  |  |
| FWHM(任意単位)       | 半値幅。後述の半値幅 FWHM(Full Width at Half Maximum)の計算方法を |  |  |  |  |
|                  | 参照。単位はエネルギー校正の状態による。                              |  |  |  |  |
| FWTM(任意単位)       | 1/10 幅。半値幅がピークの半分の位置であるのに対し、ピークから 1/10            |  |  |  |  |
|                  | (ピークの裾野)の幅。単位はエネルギー校正の状態による。                      |  |  |  |  |
|                  |                                                   |  |  |  |  |

| モード。histogram など動作モードの設定状態を表示               |
|---------------------------------------------|
| 計測モード。real time、live time または auto stop を表示 |
| 設定した計測時間                                    |
| リアルタイム(実計測時間)                               |
| 保存したリストファイルのサイズ                             |
|                                             |

取扱説明書 APU8101H

| 現在の計測回数/総計測回数を表示。総計測回数は、後述の meas タブ内 |
|--------------------------------------|
| の repeat count で指定します。               |
|                                      |
| 極性と出力中の電圧モニタ値を表示(モニタ電圧は土約 1%の誤差があり   |
| ます)。出力電圧には負荷依存性があるため、設定電圧とモニタ電圧が一    |
| 致しない場合があります。                         |
| バイアスシャットダウン状態、緊急停止ボタンが押された場合等、HV に   |
| 関する異常があった時に点灯                        |
| 本機器に設定されている出力電圧(V)                   |
| 本機器に設定されている1分間の出力掃引電圧(V/min)         |
|                                      |

・タブ

| Device      | 入力CHに関する設定。       |
|-------------|-------------------|
| meas        | 計測時間に関する設定。       |
| file        | データのファイル保存に関する設定。 |
| calibration | ROI間の算出結果を表示します。  |
| HV          | HV 出力に関する設定       |
| WAVE        | 波形データの表示。         |

## 5. 2. Device タブ

| Device                                   | meas                                    | file                               | calibr                                    | ation                              | HV                                  | WAVE                               | E                               |
|------------------------------------------|-----------------------------------------|------------------------------------|-------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------------|
| APU810                                   | LH                                      |                                    |                                           |                                    |                                     |                                    |                                 |
| config<br>polarity<br>neg 🗸              | GAIN                                    | base<br>rest<br>filter<br>Fas      | eline<br>orer<br>r(µs)<br>t _             | blr<br>fix dat<br>(digit)<br>7870  | a ti<br>((                          | nreshold<br>digit)<br>35 🌻         |                                 |
| timing<br>type<br>CFD v                  | CFD<br>function<br>(multiple)<br>x0.21  | CFE<br>dela<br>) (dig              | )<br>ay<br>it)<br>is ↓                    | CFD<br>walk<br>(digit)<br>20       | <b>A</b>                            |                                    | QDC<br>sum/peak<br>sum 🗸        |
| QDC<br>pretrigge<br>(ns)<br>-16ns v      | QDC<br>filter<br>(ns)                   | QDO<br>inte<br>rang<br>/ 160       | C<br>gral<br>ge(ns)<br>) 🚖                | QDC<br>full sca<br>(multip<br>1/64 | q<br>ale L<br>ble) (r<br>v 2        | DC<br>LD<br>digit)<br>20 🚖         | QDC<br>ULD<br>(digit)<br>8000 🜲 |
| rise<br>startcnt<br>(digit)<br>4         | stop cnt<br>(digit)<br>11 🗣             | fall —<br>start cr<br>(digit)<br>5 | nt stop<br>(dig                           | tr<br>ocnts<br>it) (r              | otal —<br>tart cn1<br>digit)<br>5 📢 | stop cnt<br>(digit)                | PSA<br>full scale<br>(multiple) |
| LIST-WA<br>list-wave<br>delay<br>(digit) | /E<br>list-wave<br>data<br>(ns)<br>4000 | P<br>P                             | ileup n<br>ileup<br>eject<br>nable<br>OFF | eject<br>pile<br>pea<br>(dig       | eup<br>ak judg<br>git)              | pileup<br>judge r<br>(digit)<br>15 | num<br>t                        |
| mode<br>list                             | ~                                       | IP ad<br>192.                      | ldress<br>168.10                          | ). 130                             |                                     |                                    | ON/OFF                          |

図 5 Device タブ

Device 部 入力信号の極性。正極性の場合は pos、負極性の場合は neg を選択します。 polarity GAIN アナログのゲイン(増幅値)を選択します。 baseline restorer filter ベースラインレストアラの時定数を設定します。Ext(自動ベースラインレスト アラ無し)、Fast、4 µs、85 µs、129 µs、260 µs、Fix から選択します。 通常は85*us* に設定します。 baseline restorer filter の設定で Fix を選択時有効です。前述の baseline blr fix data(digit) restorer filter で Fix 時は、ADC data から blr fix data 値を減算することがで きます。設定範囲は0から16383です。 threshold (digit) 入力信号の波形取得の閾値を設定します。単位は digit です。設定範囲は0から 8191 です。wave モードでraw の波形を見ながら、ノイズレベルより大きい 値を設定します。 Set above noise threshold MA TDC, QDC

calc enable

rise edge

APU8101H のコンスタントフラクションタイミングは FPGA によるデジタル信号処理にて実現しております。



s(n) = fv(n) - v(n - delay)

当社で開発したデジタル信号処理のアルゴリズムは、サンプリングした波形データから最小二乗法による 多項式近似を用います。

$$L(a, b, c) = \sum_{i=1}^{N} \{y_i - (ax_i^2 + bx_i + C)\}^2$$

を最小となる a,b,c のパラメータを探して CFD であればゼロクロス点(WALK)、リーディングエッジ であればスレッショルド点の内挿を得ることで、より精密な時間情報を計算しています。 なお FPGA によりパイプライン形式で計算をすることで、一連の演算時間は約 100ns 以下と非常に高速 に計算されるため、デットタイムが小さく高スループットを可能としております。



timing type タイムスタンプする際の波形を、CFD 波形またはLE 波形から選択します。

LE リーディングエッジ(Leading Edge Timing、LET やLED も同意です) あるトリガーレベル t に到達したタイミングです。トリガー取得タイミングは a'とb'のように波高が変われば時間も異なります。



図 6 リーディングエッジ (Leading Edge Timing)の考え方

CFD コンスタントフラクションタイミング (Constant Fraction Disicriminator Timing)

下図の波形gとhのゼロクロスタイミングであるCFDは、波形の立ち上がり時間が同じであれば、波高が変化しても一定である、という特徴があります。



図7 コンスタントフラクションタイミング(Constant Fraction Disicriminator Timing)の考え方

CFD functionCFD 波形整形用に元波形を縮小するための倍率。0.03 倍、0.06 倍、0.09 倍、<br/>0.12 倍、0.15 倍、0.18 倍、0.21 倍、0.25 倍、0.28 倍、0.31 倍、0.34 倍、<br/>0.37 倍、0.40 倍、0.43 倍、0.46 倍 から選択します。



 CFD delay
 CFD 遅延時間を設定します。APU8101Hは1nsから24nsまで1ns単位で設定します。



CFD walk タイムスタンプする閾値を設定します。単位は digit です。wave モードで CFD の 波形を見ながら、O クロス位置より近辺の値で設定します。



QDC pre trigger (ns) 積分値算出用に波形整形を開始するタイミングをOns、-8ns、-16ns、-24ns、-32ns、-40ns、-48ns、-56ns、-64nsから選択します。



QDC integral range (ns)

QDC の積分時間を選択します。設定範囲は 48ns から 32000ns です。



QDC full scale QDC データのゲインを設定します。設定は 1/1、1/2、1/4、1/8、1/16、 1/32、1/64、1/128、1/256、1/512から選択し、QDC 値が 8191 以下 になるようにします。



QDC LLD(digit) QDC のLLD (Lower Level Discriminator)を設定します。単位は digit です。 この閾値より下の積分値はタイムスタンプデータ、積分値データを取得しません。 ULD より小さい値に設定します。設定範囲は0から8191 です。 QDC ULD(digit) QDC のULD (Upper Level Discriminator)を設定します。単位は digit です。 この閾値より上の積分値はタイムスタンプデータ、積分値データを取得しません。 LLD より大きい値に設定します。設定範囲は0から8191 です。 mode

動作モードを選択します。

wave 入力信号をデジタイズし波形を表示します。

 list
 入力信号について、時間、CH、積分の情報を1イベントとし、バイ

 ナリファイルとして出力、保存することができます。時間スペクトル

 やPSD2次元ヒストグラムを取得する際にも使用します。

list-wave (オプション)list データの後に波形データを付加して出力します。

list-pileup-wave(オプション)パイルアップした場合にlist データ中に波形データ を挿入して出力します。

 PSD ON/OFF
 (オプション) list モードでリストデータ取得中の PSD2 次元ヒストグラム等の表示

 の有無を選択します。リストデータのみを取得したい場合はチェックを外します。

 高計数の時 ON にすると、リストデータの取得が遅くなるので注意ください。

#### 5. 2. 1. (オプション) PSA 部

PSA(Pulse Height Analysis)演算に関する設定です。list モード時の追加データとして、取得波形の立ち上がり部分 RISE、立ち下がり部分 FALL、波形全体 TOTAL の積分範囲等に関する設定をします。 PSA 演算では、入力波形が負極性の場合は反転して正極性とし、波形は常に正極性とします。

| -PSA            |                 |                 |                   |
|-----------------|-----------------|-----------------|-------------------|
| rise            | fall            | total           | PSA<br>full scale |
| (digit) (digit) | (digit) (digit) | (digit) (digit) | (multiple)        |
| 4 🗘 11 🗘        | 5 🗘 5 🗘         | 5 🗘 10 🗘        | 1/1 🗸             |

図 8 PSA 関連設定

```
• PSA 部
```

rise start cnt(digit) 立ち上り部分の積分値 RISE の対象範囲の開始位置です。threshold を超えた位置か ら、その手前の範囲を設定します。設定範囲は1から498(498ns=498×1ns) です。

rise stop cnt(digit) 立ち上り部分の積分値 RISE の対象範囲の終了位置です。前述の rise start cnt から 積分をする範囲を設定します。設定範囲は 1 から 16383 (16363ns=16383×1ns)です。

RISE 値の算出例:

設定 threshold:50、rise start cnt:5、rise stop cnt:8、PSA full scale:1/1 の場合、threshold を超えた位置の5 点手前から8 点分、下図の緑枠線部分を積分 します。その積分値をPSA full scale 倍してリストデータの RISE 値とします。



図 9 RISEの対象範囲設定例

fall start cnt(digit) 立ち下がり部分の積分値 FALL の対象範囲の開始位置です。threshold を超えた位置から、積分範囲の開始位置を設定します。設定範囲は1から 16383 (16383ns=16383×1ns)です。

fall stop cnt(digit) 立ち下がり部分の積分値 FALLの対象範囲の終了位置です。前述の fall start cnt から積分をする範囲を設定します。設定範囲は 1 から 16383 (16383ns=16383×1ns)です。 FALL 値の算出例:

設定 threshold:50、fall start cnt:5、fall stop cnt:25、PSA full scale:1/1 の場合、FALL 値は threshold を超えて5 点目から 25 点分、下図の青枠線部分を 積分します。その積分値を PSA full scale 倍してリストデータの FALL 値とします。



図 10 FALLの対象範囲設定例

total start cnt(digit) 波形全体積分値 TOTAL の対象範囲の開始位置です。 threshold を超えた位置か ら、その手前の範囲を設定します。設定範囲は1から498(498ns=498×1ns) です。

total stop cnt(digit) 波形全体積分値 TOTAL の対象範囲の終了位置です。前述の total start cnt から積分をする範囲を設定します。設定範囲は 1 から 16383 (16383ns=16383×1ns)です。

TOTAL 値の算出例:

設定 threshold: 50、 total start cnt: 5、 total stop cnt: 50、 PSA full scale: 1/1 の場合、 threshold を超えた位置の 5 点手前から 50 点分、 下図の赤枠線部分 を積分します。 その積分値を PSA full scale 倍してリストデータの TOTAL 値とします。



図 11 TOTAL の対象範囲設定例

PSA full scale (multiple) リストデータのRISE 値、FALL 値、TOTAL 値の縮小倍率を、1/1、1/2、1/4、 1/8、1/16、1/32、1/64、1/128、1/256、1/512 から選択します。積分 値が 65535 を超える場合は縮小倍率を大きく設定します。

#### 5. 2. 2. (オプション) LIST-WAVE 部

#### list モード中に波形データを付加することができます。

| Ε         |
|-----------|
| list-wave |
| data      |
| (ns)      |
| 4000 🌻    |
|           |

図 12 list-wave 関連設定

•LIST-WAVE部

list-wave delay(digit)list-wave または list-pileup モード用設定。取得波形の delay を調整します。<br/>設定範囲は Odigit から 31 digit です。1 digit は波形 8 点分です。list-wave data(digit)list-pileup モードまたは list-wave 用パラメータ。パイルアップ波形出力のデ

ータ点数を設定します。設定範囲は8点から4000点です。

#### 5. 2. 3. (オプション) pile up reject 部

取得波形にパイルアップが含まれる場合、CH 毎の設定により、そのイベントデータを除去することが可能です。

| _pileup rejec | t          |           |
|---------------|------------|-----------|
| pileup        | pileup     | pileup    |
| reject        | peak judge | judge num |
| enable        | (digit)    | (digit)   |
| OFF 🗸         | 5 🌲        | 15 🜲      |
|               | <u></u>    |           |

図 13 pile up reject 関連設定(上部 2CH 分のみ表示)

pile up reject パイルアップリジェクト機能を選択します。

ON 有効。パイルアップを含む波形で算出されたイベントデータを除去します。

OFF 無効。パイルアップを含む波形で算出されたイベントデータでも出力します。

pileup peak jugde(digit) パイルアップ波形の判定量を設定します。単位は digit です。wave 波形の 振幅にあたる縦軸(digit) と相関があります。この値が小さすぎるといとノ イズでもパイルアップと判定する場合がありますので注意してください。 パイルアップ波形出力のデータ点数を設定します。

## 5. 3. meas タブ

| Device                     | meas                          | file             | calibration    | option              | HV        |
|----------------------------|-------------------------------|------------------|----------------|---------------------|-----------|
| measu<br>real tir<br>measu | rement n<br>me 🔍<br>rement ti | node<br>]<br>ime | ROI1 v         | condition –         | 0         |
| 3600<br>repeat             | sec ▽                         |                  | gross (co      | unt) 200<br>nt) 300 |           |
| 1<br>clear a               | t start                       |                  |                |                     |           |
| updat                      | e Info., h                    | istogra          | am, 2D histogi | ram when            | list mode |

図 14 meas タブ

| measurement mode       | real time、liv  | e time または auto stop を選択します。           |
|------------------------|----------------|----------------------------------------|
|                        | real time      | リアルタイムが後述 measurement time になるまでデータを   |
|                        |                | 計測します。                                 |
|                        | live time      | 有効計測時間(リアルタイムとデッドタイムの差)が予め設定           |
|                        |                | した時間になるまで計測します。                        |
|                        | auto stop      | 後述のauto stop condition 部で指定した条件に達するまで計 |
|                        |                | 測します。                                  |
| measurement time       | 計測時間設知         | 定。設定範囲は OO:OO:OO からヒストグラムモード時は         |
|                        | 781:00:00、     | list モード時は 48:00:00 です。                |
|                        | 上記auto sto     | pの場合、本設定は無視され、自動的に781:00:00 となります。     |
| sec $\bigtriangledown$ | sec / hhin     | nmiss 表示切替用のプルダウン                      |
| repeat count           | 繰り返しの計         | 則回数を指定します。                             |
| clear at start         | チェックを入れ        | ると、計測開始時にヒストグラムデータの初期化を実行します。          |
| update Info, histograr | n, 2D histogra | m when list mode                       |
|                        | list モードで計     | 測中に CH 部のデータ取得と表示を行います。また、受信したリ        |
|                        | ストデータよ         | のヒストグラムを作成して表示を行います。                   |
|                        | ※注意※           |                                        |
|                        | PCのスペック        | 7によっては、処理が間に合わず全てのイベントデータを受信でき         |
|                        | ない可能性が         | ありますのでご注意ください。                         |
|                        |                |                                        |

auto stop condition 部

ー回の計測の停止条件を指定します。以下でチェックを入れた条件の中から、いずれか一つでも停止条件 が成り立つと、計測が停止します。

| ROI 選択      | 以下の各種カウントの対象となるROIを一つ選択します。                  |
|-------------|----------------------------------------------|
| peak(count) | 上記で選択した ROIの peak (count)が、ここで指定した値以上になると、停止 |
|             | 条件が成立します。                                    |

| gross(count) | 上記で選択した ROI の gross(count)が、ここで指定した値以上になると、停 |
|--------------|----------------------------------------------|
|              | 止条件が成立します。                                   |
| net(count)   | 上記で選択したROIのnet(count)が、ここで指定した値以上になると、停止条    |
|              | 件が成立します。                                     |

## 5.4. file タブ

| Device                                 | meas       | file      | calibrati                 | on               | option                  | HV       |         |        |
|----------------------------------------|------------|-----------|---------------------------|------------------|-------------------------|----------|---------|--------|
| save cor                               | nfiguratio | n file at | t stop                    | sav              | e screens               | hot file | e at st | ор     |
| save hist                              | togram a   | t stop    |                           | sav              | e list file             |          |         |        |
| histogram file path 🗁<br>C:¥Data¥histo |            |           |                           | list<br>C:¥      | file path<br>¢Data¥list |          |         |        |
| histogram continuous save              |            |           |                           | list file number |                         |          |         |        |
| histogram file save time(sec)          |            |           | sec)                      | file<br>list(    | name<br>000000          |          |         |        |
|                                        |            |           |                           | list<br>10       | read size               | from d   | evice   | (byte) |
|                                        |            |           | max. list file size(byte) |                  |                         |          |         |        |
|                                        |            |           |                           | list data format |                         |          |         |        |
|                                        |            |           |                           | bin              | ary(big er              | ndian)   | $\sim$  |        |

図 15 file タブ

save configuration file at stop

チェックを入れると、構成ファイルを保存します。ファイル名の拡張子はiniとなります。

save histogram at stop

計測終了時にヒストグラムデータをファイルに保存します。

histogram file path ヒストグラムデータファイルの絶対パスを設定します。拡張子無しも可です。 このファイル名で保存されるのではなく、ここで指定した名称の直後に、この ファイル名を元にして計測停止時の日時(年月日時分秒)を示す ~\_YYYYMMDD\_hhmmss<sup>~</sup>形式文字列が付加され、最後に拡張子が付加され ます。

例:

histogram file path に C:¥Data¥histogram.csv と設定し、日時が 2024/09/01 12:00:00 の場合は、 C:¥ Data ¥histogram\_ 20240901\_120000.csv というファイル名でデータ保存します。

histogram continuous save

チェックを入れると、以下で指定した時間経過毎にヒストグラムデータファイ ルを保存します。ファイル名には保存時点の日時を示す文字列が付加されます。

histogram file save time 上記で保存する時間間隔を指定します。

save screenshot file at stop

チェックを入れると、計測停止時に表示されていた本アプリ画面をファイルに 保存します。ファイル名の拡張子はpngとなります。

| save lis tfile            | リストデータをファイルに保存するかを設定します。list モード選択時のみ有効                      |
|---------------------------|--------------------------------------------------------------|
|                           | ল্'ব.                                                        |
| list file path            | リストデータファイルの絶対パスを設定します。拡張子無しも可です。                             |
|                           | ※注意※                                                         |
|                           | このファイル名で保存されるのではなく、このファイル名をもとにして以下の                          |
|                           | フォーマットになります。                                                 |
|                           | 例:list file path にC.¥Data¥listbin と設定し、後述のlist file number が |
|                           | 0 の場合は、C:¥Data¥ist_000000.bin というファイル名でデータ保存を開               |
|                           | 始します。                                                        |
| list file number          | リストデータファイルに不可する番号の開始番号を設定します。                                |
|                           | 設定可能範囲は、 0 から 999999 までです。 999999 を超えた場合 0 にリ                |
|                           | セットされます。                                                     |
| file name                 | list file path とlist file number を元に、実際に保存される時にファイル名を表       |
|                           | 示します。                                                        |
| list read size from devi  | ice (byte)                                                   |
|                           | リストデータ最小読み込み長。単位はByte。通常は10000に設定します。 高                      |
|                           | カウントレート時は 20000Byte として PC 側で多くのイベントを受信でき                    |
|                           | るようにします。 低カウントレート時に設定を下げて少ない数でイベントを受                         |
|                           | 信できるようにします。                                                  |
| max. list file size(byte) | 最大リストデータファイルサイズ。リストデータを保存中にこの設定を超過し                          |
|                           | た時、list file number を 1 つ加算したファイル名を生成し、このファイル名で              |
|                           | 保存を継続します。                                                    |
| list data format          | バイナリやテキストといったリストデータのファイル保存形式を選択します。                          |
|                           | binary (big endian)                                          |
|                           | ビッグエンディアンバイナリファイル形式。ファイルサイズを小さくできます。                         |
|                           | 最上位のバイトが最下位のメモリアドレスを占有します。ネットワークバイト                          |
|                           | オーダとして一般的です。データの並びを目視にて容易に確認できます。                            |
|                           | binary (little endian)                                       |
|                           | リトルエンディアンバイナリファイル形式。ファイルサイズを小さくできます。                         |
|                           | 最下位のバイトが最上位のメモリアドレスを占有します。Windows、Mac                        |
|                           | OS X、Linux で使用されます。データの並びを目視で確認することは困難です。                    |
|                           | txt (CSV)                                                    |
|                           | カンマ(、)区切りのテキスト形式。データをメモ帳や Excel などで容易に確認                     |
|                           | できます。                                                        |
|                           | ※注意※                                                         |
|                           | カンマや改行などのデータも付加され、計測時間が長くなるにつれ時刻データ                          |
|                           | の桁数も増えていきますので、1 イベントあたりのデータ量が増え、ファイル                         |
|                           | サイズが増加していきます。                                                |

## 5.5. calibration タブ

| Devi  | се        | meas        | s file       | calib      | ration          | optio        | n HV           |          |                 |
|-------|-----------|-------------|--------------|------------|-----------------|--------------|----------------|----------|-----------------|
| ROI   | RO:<br>CH | I           | ROI s<br>(ke | tart<br>V) | ROI en<br>(keV) | d            | energ<br>(keV) | y (<br>f | Gauss<br>itting |
| 1     | CH        | 1 🗸         | 0            | -          | 8191            | -            | 59.54          | -        | $\square$       |
| 2     | CH        | 1 🗸         | 0            | \$         | 0               | \$           | 121.78         | \$       | $\square$       |
| 3     | CH        | 1 🗸         | 0            | \$         | 0               | -            | 661.7          | +        | $\square$       |
| 4     | CH        | 1 🗸         | 0            | \$         | 0               | -            | 1173.2         | +        | $\square$       |
| 5     | CH        | 1 🗸         | 0            | \$         | 0               | -            | 1332.5         | -        | $\square$       |
| 6     | CH        | 1 🗸         | 0            | -          | 0               | -            | 1408           | -        | $\boxtimes$     |
| 7     | nor       | ne 🗸        | 0            | -          | 0               | -            | 1              | -        |                 |
| 8     | nor       | ne 🗸        | 0            | -          | 0               | -            | 1              | -        |                 |
| unit  | ch        | caxis<br>⊖e | v o          | keV (      | ) manu          | al 🔿         | file           |          |                 |
| ROI   |           | ce          | ntroid(      | ch) ene    | rgy (ke         | <b>V)</b> *a |                |          |                 |
| RO    | I1 🕓      |             | 657.         | 57 - 5     | 9.54            | 0.0          | 0909           | *        |                 |
| RO    | I6 🗔      | / - 1       | 15492.       | 13 -       | 1408            | +b           |                |          |                 |
|       |           |             |              |            |                 | -0.          | 233246         | *        |                 |
| calit | brati     | on file     | path         |            |                 | x^2          | 2*c            | *        |                 |
| C:    |           |             |              |            |                 | Na           | N              | Ŧ        |                 |
| ¥     | .010      | _regu       | rator入i      | nる入力       | (2¥             | uni<br>ke    | v              |          |                 |
| -     | auto      | updat       | e file       |            |                 | Ke           | v              |          |                 |
|       |           |             |              |            |                 |              |                |          |                 |

図 16 calibration タブ

| ROI CH         | ROI (Re | gion Of Interest)を適用する CH 番号を選択します。1 つのヒスト             |  |  |  |  |  |  |  |  |
|----------------|---------|--------------------------------------------------------|--|--|--|--|--|--|--|--|
|                | グラムに    | 対し最大8 つのROIを設定可能です。                                    |  |  |  |  |  |  |  |  |
| ROI start      | ROI の開  | ROIの開始位置。単位は後述 unit of x axis で選択した単位です。               |  |  |  |  |  |  |  |  |
| ROI end        | ROI の終  | ROIの終了位置。単位は後述 unit of x axis で選択した単位です。               |  |  |  |  |  |  |  |  |
| energy         | ピーク位    | 置(ch)のエネルギー値の定義。 <sup>60</sup> Co の場合、1173 や 1332(keV) |  |  |  |  |  |  |  |  |
|                | と設定。    | 後述の calibration にて ch を選択した場合、ROI 間のピークを検出し            |  |  |  |  |  |  |  |  |
|                | そのピー    | ク位置(ch)と設定したエネルギー値から keV/ch を算出し、半値幅の                  |  |  |  |  |  |  |  |  |
|                | 算出結果    | に適用します。                                                |  |  |  |  |  |  |  |  |
| unit of x axis | X軸の単    | 位。 設定に伴いX 軸のラベルも変更されます                                 |  |  |  |  |  |  |  |  |
|                | ch      | ch(チャネル)単位表示。ROI 部の peak,centroid,FWHM,                |  |  |  |  |  |  |  |  |
|                |         | FWTM の単位は ch になります。                                    |  |  |  |  |  |  |  |  |
|                | eV      | eV単位表示。1 つのヒストグラムにおける2種類のピーク(中心                        |  |  |  |  |  |  |  |  |
|                |         | 値)とエネルギー値の2点校正により、chがeVになるように1                         |  |  |  |  |  |  |  |  |
|                |         | 次関数y=ax+bの傾きaと切片bを算出しX軸に設定します。                         |  |  |  |  |  |  |  |  |
|                |         | ROI 部の peak, centroid, FWTM, FWHM の単位は eV になりま         |  |  |  |  |  |  |  |  |
|                |         | す。                                                     |  |  |  |  |  |  |  |  |
|                | keV     | keV 単位表示。1 つのヒストグラムにおける 2 種類のピーク (中                    |  |  |  |  |  |  |  |  |
|                |         | 心値)とエネルギー値の2点校正により、ch が keV になるよう                      |  |  |  |  |  |  |  |  |
|                |         | に1次関数y=ax+bの傾きaと切片bを算出し、X軸に設定し                         |  |  |  |  |  |  |  |  |
|                |         | ます。ROI部のpeak, centroid, FWTM, FWHMの単位は keV に           |  |  |  |  |  |  |  |  |

|                       |            | なります。<br>例:<br>5717.9ch に <sup>60</sup> Co の 1173.24keV、6498.7ch に <sup>60</sup> Co の<br>1332.5keV がある場合、2 点校正より a を 0.20397、b を<br>6.958297 と自動算出します。 |
|-----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | manual     | 1 次関数 y = ax + b の a, b を適用します。単位は任意に設定します。                                                                                                            |
|                       | file       | create energy calibration file にて作成した、エネルギー校正フ                                                                                                         |
|                       |            | ァイル情報を使用します。ファイルの拡張子は、ec 個定になりま                                                                                                                        |
|                       |            | す。                                                                                                                                                     |
|                       |            | エネルギー校正ファイルについての詳細は、Tool 編 create                                                                                                                      |
|                       |            | calibration file を参照ください。                                                                                                                              |
| ROI                   | 前述 eV, ke  | ₩ での計算時に参照する ROI の番号を選択します。 1 点校正の場                                                                                                                    |
|                       | 合、片方をr     | noneに設定します。                                                                                                                                            |
| *a, +b, x^2*c         | 前述manua    | al 選択時に使用する、任意の値を入力します。前述 eV, keV, file 選                                                                                                              |
|                       | 択時は、その     | D時に算出された値を表示します。                                                                                                                                       |
| unit                  | 前述manua    | al 選択時に使用する、任意の単位を入力します。                                                                                                                               |
| calibratoin file path | 前出 file で使 | 明するファイル名を指定します。                                                                                                                                        |
| auto update file      | チェックをフ     | れると、calibration file path で指定されたファイルを定期的に更                                                                                                             |
|                       | 新します。言     | 情では、エネルギー校正ファイルの作成画面で選択した ROI が使                                                                                                                       |
|                       | われます。      | 細については、Tool 編 create calibration file を参照ください。                                                                                                         |
| Gauss fitting         | ROI 範囲のと   | ピーク波形にガウス関数フィッティングを掛けて出力します。                                                                                                                           |

## 5. 6. HVタブ



図 17 HV タブ (HV out タブ)

HV OFF 高圧電圧出力 OFF ボタン。クリック後、後述の sweep voltage(V/min) のレートで降圧します。

| ロV OUL タノ部           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | HV out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | output<br>enable voltage(V) enable voltage(V/min)<br>OFF 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | step1: 400<br>step2: 0<br>step3: 0 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| output enable        | 高圧出力 ON/OFF を選択します。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| output voltage(V)    | 高圧出力値の設定。 極性に関係なく絶対値にて入力。 設定範囲は 0 から                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | 4000V(最大定格電圧 4000V 時)。機器構成によっては 5000V(最大定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | 格 5000V)の場合有り。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| step enable          | step1からstep3のうち、どの段階まで使用するかをON(緑/OFF(灰で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 指定(APU8101Hはstep1のみ可)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sweep voltage(V/min) | 高圧出力の昇圧/降圧のレート(V/min)。設定範囲は 1 から 5000V/min。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | output voltage(V)のstep1 までは、sweep voltage(V/min)のstep1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | のレートで、設定可能。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | ※ 急激な昇圧/降圧は、検出器の故障の原因になる場合があります。検出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | 器に最適な値で設定してください。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| set parameter        | 上記 high voltage 関連の設定値を、本機器へ送信します。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

HV status 部



図 18 HV status

| output polarity    | 高圧出力の極性。 pos は正極性、 neg は負極性。       |
|--------------------|------------------------------------|
| output current(uA) | 出力電流値(uA)。モニタ電流は±約5%の誤差があります。      |
|                    | ※ 負荷依存性があるため、負荷が軽い場合(数十µA以下相当)には予想 |
|                    | される電流値とモニタ値が大きく異なる場合があります。         |
| HV Emergency LED   | HV に関する異常があった時や緊急停止ボタンが押された時に点灯。   |
|                    | 点灯時直ちに降圧のレートで高圧出力を OFF にします。       |
|                    |                                    |

## 5. 7. wave タブ

本機器内部での信号処理の状態を本アプリにて波形データとして取得することが可能です。計測前の信号 処理調整の際、MONI 端子からの preamp や slow 信号をオシロスコープで確認しますが、本機能でも同 様のことが可能です。



図 19 wave タブ

| ON/OFF             | 波形表示の可否を指定します。                                 |  |  |  |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| СН                 | 表示する波形のCHを選択します。(APU8101HはCH1のみ可)              |  |  |  |  |  |  |  |  |  |  |
| t ype              | 表示する波形の種類を下記から選択します。                           |  |  |  |  |  |  |  |  |  |  |
|                    | raw ADC でデジタイズされ、 BLR 処理された波形                  |  |  |  |  |  |  |  |  |  |  |
|                    | CFD CFD 波形整形された波形                              |  |  |  |  |  |  |  |  |  |  |
|                    | PTG (オプション)パイルアップしたタイミングの矩形波                   |  |  |  |  |  |  |  |  |  |  |
| trigger edge       | トリガーの極性を選択します。 通常は pos を選択してください。              |  |  |  |  |  |  |  |  |  |  |
| trigger SIG        | トリガーとなる SIG(Signal)を選択します。 通常は SIG1 を選択してください。 |  |  |  |  |  |  |  |  |  |  |
| hreshold           | トリガーの閾値を設定します。※グラフ内のカーソルでも設定できます。              |  |  |  |  |  |  |  |  |  |  |
| trigger point      | 波形の表示開始ポイントを指定します。※グラフ内のカーソルでも設定できます。          |  |  |  |  |  |  |  |  |  |  |
| wave compress      | X 軸の時間スケール圧縮度を、1/1、1/4、1/8、1/16、1/32、1/64、     |  |  |  |  |  |  |  |  |  |  |
|                    | 1/128、1/256 から選択します。 1/2 はありません。 立ち下がり時間の長い波形  |  |  |  |  |  |  |  |  |  |  |
|                    | を表示する場合に使用します。                                 |  |  |  |  |  |  |  |  |  |  |
| wave free run      | チェックを外すとトリガーされた波形が表示され、チェックするとトリガーフリー          |  |  |  |  |  |  |  |  |  |  |
|                    | の波形が表示されます。ベースラインレベルやノイズレベルを見ることにも使用で          |  |  |  |  |  |  |  |  |  |  |
|                    | きます。                                           |  |  |  |  |  |  |  |  |  |  |
| X axis calibration | X軸の単位を bin または ns から選択します。                     |  |  |  |  |  |  |  |  |  |  |
| Y axis calibration | Y 軸の単位を bin または mV から選択します。 ※mV 表示は参考としてお使いくだ  |  |  |  |  |  |  |  |  |  |  |
|                    | さい。                                            |  |  |  |  |  |  |  |  |  |  |
|                    |                                                |  |  |  |  |  |  |  |  |  |  |





図 20 PSD タブ

#### PSD 表示に関する設定です。

※list モードにて取得したリストデータをもとに PSD グラフと cursor area グラフを生成します。

PSD グラフ リストデータ内の値を用いた 2 次元ヒストグラムです。X 軸とY 軸にそれぞれ任意にデ ータの種類を選択しておき、X 軸とY 軸の交点に頻度を積算していきます。 ※注意※ X 軸と Y 軸のチャネル数は 16384 チャネルありますが、この場合約 537MB (16384×16384×2Byte (counts)) ものメモリが必要となるため、実際は後述 の compress の設定により圧縮しています。

- PSD axis type PSD グラフのX軸とY軸に割り当てるリストデータ内の項目を選択します。X軸はx1 とx2の組み合わせからx1/x2とします。Y軸はy1とy2の組み合わせからy1/y2と します。選択項目は、TOTAL、FALL、RISE、QDC、1です。
- magnification PSD グラフの X 軸と Y 軸の値に対し設定値を積算します。例えば X 軸のこの設定を
   1000 とし、x1 に FALL、x2 に RISE と選択した場合、X 軸は FALL/RISE になり
   ますが、その商が 1,234 の場合、1000 倍して 1234 となります。
- compress PSD グラフの圧縮率を以下の項目より選択します。分割数とその場合のメモリ使用量を記載します。尚、PC の状態により、メモリを多く使用する項目を選択するとエラーメッセージが表示され、使用できない場合があります。
  - 1(16384) 使用不可。16384×16384。約537MB
  - 1/2 (8192) 16384 チャネルの1/2。8192×8192。約135MB
  - 1/4 (4096) 16384 チャネルの1/4。4096×4096。約34MB
  - 1/8 (2048) 16384 チャネルの1/8。2048×2048。約8.4MB
  - 1/16(1024) 16384 チャネルの1/16。1024×1024。約2.1MB
  - 1/32 (512) 16384 チャネルの 1/32。512×512。約0.52MB

1/64 (256) 16384 チャネルの1/64。256×256。約0.13MB

1/128 (128) 16384 チャネルの1/128。128×128。約0.03MB

cursor area グラフ PSD グラフ内カーソルにて指定した範囲内のデータを抽出し、X軸方向から見た場合の 1 次元ヒストグラムです。

cursor cursor area グラフ用データを抽出するために、PSD グラフ内でこのカーソルにて範囲を設定します。設定を変更すると PSD 内カーソルに反映され、その四方で囲まれた範囲のデータをX軸方向から見た 1 次元ヒストグラムを cursor グラフに表示します。

## 6. 初期設定

#### 6.1. 接続と電源

- (1) 前述のケーブル接続を確認します。
- (2) 本機器の電源をONにします。
- (3) PCの電源をONにします。
- (4) 本アプリを起動します。

#### 6.2. 高圧電源印加

前述のHV タブにて、検出器の仕様による適切な高電圧設定を実行し、HV output 部にて、高圧電源の 状態を確認します。

| Device                 | evice meas  |               | calibratio     | on H            | V     | WAVE   |      |
|------------------------|-------------|---------------|----------------|-----------------|-------|--------|------|
| HV OF                  | F           |               |                |                 |       |        |      |
| HV out                 | t           |               |                |                 |       |        |      |
| output<br>enable<br>ON | out<br>volt | put<br>age(V) | step<br>enable | sweep<br>voltag | e(V/r | min)   |      |
| ste                    | ep1: 70     | )             |                | 600             | -     |        |      |
| ste                    | ep2:0       | *             | $\overline{}$  | 0               | *     | set    |      |
| ste                    | ep3:0       | 4<br>7        | $\overline{}$  | 0               | *     | parame | eter |
|                        | 図 2         | 21            | 高圧電            | 源出              | 力調    | 錠      |      |

- (1) HV status LED が消灯していることを確認します。
- (2) HV out タブで output voltage が設定電圧近辺であることを確認します。
- (3) sweep voltage が検出器仕様に適切なレート(V/min)であることを確認します。
- (4) 検出器に高電圧を印加します。output enable をON にして、set parameter ボタンをクリックします。

実行後、HV output LED がHV sweep 点滅し、HV output の値とスライドが上昇します。 set voltage 付近に到達するとHV output LED がHV on 点灯します。

| HV output                         | -700 V                   |
|-----------------------------------|--------------------------|
| HV status                         | shutdown                 |
| set voltage(V) s<br>step1 : 700 V | weep(V/min)<br>600 V/min |
| 図 22 高圧電波                         | 原状態確認                    |

#### 6.3. 検出器出力信号の確認

(1) 検出器出力信号をオシロスコープと接続し、波高値(mV)と極性を確認します。 トランジスタリセット型プリアンプの場合、右上がりであれば正極性、右下がりであれば負極性 です。



図 23 左側:抵抗フィードバック型 負極性の場合、右側:トランジスタリセット型 正極性の場合

#### 6. 4. 外部入力コネクタによる信号処理

GATE、CLRコネクタを使用することで下記のような信号処理が可能です。使用する場合にはLVTTLまたはTTLレベルの信号が必要となります。許容できるHighの信号レベルは2~5Vですが、3.3V信号にて最適化しているため、3.3V以下での使用を推奨致します。(必要な信号振幅(パルス幅)は使用する信号処理で異なります)

#### 6. 5. GATE 信号によるデータ取得

ある事象発生時にその時のイベントデータを取得したい場合は、AUX1 コネクタを使用します。High の時は計測し、Lowの時は計測しません。設定手順は以下の通りです。

- (1) DAC モニタ出力の SLOW 系フィルタの slow をオシロスコープで見ます。
- (2) SLOW 系フィルタが確定する範囲の GATE 信号(目安として slow 信号の立ち上りから立下り までをカバーするパルス幅)を作り入力します。

#### 6. 6. 外部 CLR の使用

外部タイミング信号で計測時間をゼロクリアしたい場合は、AUX2 コネクタを使用します。High の時に クリアを行います。システムがクリア入力を十分に判別可能なパルス幅(High レベルを 50ns 以上)の 信号を入力してください。

## 7. 計測

例として、LaBr<sub>3</sub>(Ce)検出器(以下検出器)を使用した際の、エネルギースペクトル計測、リスト計測、PSD 計測の操作手順を記載します。

7.1. ヒストグラムモード

7.1.1. 環境



- 7.1.2. 電源と接続
- (5) 全ての機器 (VME ラック、HV (高圧電源)、PC) がOFF であることを確認します。
- (6) 検出器とHVをSHVコネクタのケーブルで接続します。
- (7) 検出器からのアノード出力信号を本機器のCH1 にLEMO コネクタ同軸ケーブルで接続します。 BNC コネクタの場合は、BNC-LEMO 変換アダプタをご使用ください。
- (8) 本機器とPCをLANケーブルで接続します。
- (9) PCの電源をONにします。本アプリを起動します。
- (10) VME ラックの電源をON にします。
- (11) 高圧電源をONにし、検出器に応じた電圧を印加します。
- (12) この例では<sup>137</sup>Cs線源を使用しています
- 7.1.3. アプリケーション起動及び設定
- (1) デスクトップ上ショートカットアイコン APU8101H をダブルクリックして本アプリを起動しま す。起動直後、本アプリと本機器のネットワーク接続が実行されます。その際に接続エラーが発 生する場合は、後述のトラブルシューティングを参照してください。
- (2) メニュー Config をクリックして全設定を本機器へ送信します。実行後、DPP 内ヒストグラムデ ータが初期化されます。

7.1.4. 波形確認

まず波形モードにて入力されている検出器からの信号を確認します。

(1) Device タブにて以下の設定をします。

| Device                                  | meas                                  | file                              | calib                             | ration                             | HV                                  | WAVE                               |                                 |
|-----------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------------|
| APU810                                  | 1H                                    |                                   |                                   |                                    |                                     |                                    |                                 |
| config<br>polarity                      | GAIN                                  | bas<br>res<br>filte               | seline<br>torer<br>er(µs)         | blr<br>fix dat<br>(digit)          | a th<br>(c                          | nreshold<br>digit)                 |                                 |
| neg 🗸                                   | x2.0                                  | - Fa                              | st 🗸                              | 7870                               | <b>\$</b> 3                         | 85 🌲                               |                                 |
| timing<br>type<br>CFD 🗸                 | CFD<br>function<br>(multiple<br>x0.21 | CF<br>de<br>) (di                 | D<br>lay<br>git)<br>Ins 🗸         | CFD<br>walk<br>(digit)<br>20       | <b></b>                             |                                    | QDC<br>sum/peak<br>sum 🗸        |
| QDC<br>pretrigge<br>(ns)<br>-16ns 🗸     | QDC<br>filter<br>(ns)                 | QD<br>inte<br>rar                 | OC<br>egral<br>nge(ns)<br>50 🚖    | QDC<br>full sca<br>(multip<br>1/64 | Q<br>Ile Li<br>Ile) (d              | DC<br>LD<br>digit)                 | QDC<br>ULD<br>(digit)<br>8000   |
| PSA<br>rise<br>startcnt<br>(digit)<br>4 | stop cnt<br>(digit)<br>11 🗣           | fall —<br>start (<br>(digit)<br>5 | cnt stop<br>(dig                  | tr<br>ocnts<br>it) (r              | otal —<br>tart cnt<br>digit)<br>5 🗣 | stop cnt<br>(digit)                | PSA<br>full scale<br>(multiple) |
| LIST-WA                                 | VE                                    |                                   | pileup r                          | eject                              |                                     |                                    |                                 |
| list-wave<br>delay<br>(digit)<br>10     | list-wave<br>data<br>(ns)<br>4000     |                                   | pileup<br>reject<br>enable<br>OFF | pile<br>pea<br>(dig                | eup<br>ak judge<br>git)             | pileup<br>judge r<br>(digit)<br>15 | num                             |
| mode                                    |                                       | IP a                              | ddress                            |                                    |                                     | _                                  |                                 |
| wave                                    | ~                                     | 192                               | 2.168.10                          | 0.130                              |                                     |                                    | ON/OFF                          |
|                                         | <u>الا</u>                            | 25                                | 5 汲                               | 妍狺                                 | 測影                                  | 淀                                  |                                 |

上図の設定を確認した後、メニュー Clear → Start の順にクリックします。グラフに検出器からの波形 が確認できます。



以下の点を注意します。

 ・ 波形が表示されない場合、トリガーがかかっていない場合があります。まずベースラインを確認する
 ために、wave タブ内 wave free run にチェックを入れて、メニューConfig → Clear → Start を
 実行します。ベースラインと大まかにどのくらいの波高の信号がきているかを確認できます。



次に wave free run のチェックを外し、threshold を 10 くらいから徐々に上げていき、前ページの ように波形がしっかり捉えられる、threshold 値を控えておきます。この控えをこの後の設定にも使 用します。

・ 波形の波高が大きすぎてサチレーション(飽和)していないかを確認します。波高が大きい場合は、 analog gain を×1 にするか、印加高圧を下げるなどして、本機器への入力信号の振幅を下げます。

#### 7.1.5. 計測開始

config タブにて以下の設定をした後、メニュー Config をクリックします。波形計測にて控えておいた threshold 値を、config タブ内 threshold に設定します。



mode プルダウンで hist を選択し、config の設定を確認した後、メニュー Clear → Start の順にクリックします。実行後、下図のようなスペクトルが表示されます。



図29 ヒストグラムモード計測中

- acq LED が点滅します。
- measurement time に計測設定時間が表示されます。
- real time に本機器から取得した経過時間が表示されます。
- mode に histogram と表示されます。
- ROI 部に ROI 毎の計算結果が表示されます。

#### 7.1.6. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

#### 7.2. リストモード

7.2.1. 準備

前章 7.1. ヒストグラムモード の 7.1.1. 環境 から 7.1.5. 計測開始 まで、同様の準備 を行います。

#### 7.2.2. エネルギースペクトルの確認

ヒストグラムモードにて下記の点を注意します。

- output rate(cps)は1秒間に所得するイベント数であり、想定に対して低過ぎたり、高過ぎたりして いないか下図の①を確認します。リストモードでは1イベント毎に16Byteのデータを所得するため、例として、output rate(cps)が500kcpsの場合、1秒間に8MB/秒(500kcps×16Byte)のデータを保存することになります。
- spectrum タブのグラフにてスペクトルの形状に異常はないか、特にノイズデータを過剰に取得していないか下図の②を確認します。



7.2.3. 設定

- (1) config タブにて mode を list に設定します。
- (2) リストデータを保存する場合は、file タブ内の以下の各項目を設定します。

list save チェック

list file path 基準となるファイルパス

- list file number 0から999999までで任意。重複しないように注意してください。
- list file size(byte) list データファイルのサイズ。このサイズを超過すると自動で list file number を1つ繰り上げ、新しいファイルへ保存します。

| Device               | meas                 | file      | calibra | ation                            | HV                   | WAVE           |              |  |  |  |
|----------------------|----------------------|-----------|---------|----------------------------------|----------------------|----------------|--------------|--|--|--|
| save con             | figuratio            | n file at | stop    | save                             | screen               | ishot file a   | at stop      |  |  |  |
| save hist            | ogram at             | stop      |         | save                             | list file            |                |              |  |  |  |
| histograr<br>C:¥Data | n file pat<br>¥histo | h 🔁       | ]       | list fi<br>C:¥D                  | le path<br>)ata¥lis  | t              |              |  |  |  |
| histograr            | n contini            | Jous sa   | ve      | list file number                 |                      |                |              |  |  |  |
| histogran<br>3600    | n file save          | e time(s  | sec)    | file name<br>list000001          |                      |                |              |  |  |  |
|                      |                      |           |         | list read size from device(byte) |                      |                |              |  |  |  |
|                      |                      |           |         | max. list file size(byte)        |                      |                |              |  |  |  |
|                      |                      |           |         | list d<br>bina                   | lata for<br>ry(big ( | mat<br>endian) | $\checkmark$ |  |  |  |
|                      |                      |           |         |                                  |                      |                |              |  |  |  |

図31 file タブ内リストデータ保存関連設定

#### 7.2.4. 計測開始

メニュー Config  $\rightarrow$  Clear  $\rightarrow$  Start の順にクリックします。実行後、イベントを検知しリストデータを 取得すると、以下の file size(byte)が増加します。

| model APG7503 |         | memo Test |           |            |               |                   |                 |                  |                |                | HV           | on           | aco.        | save          | error         | mode                 | list         |
|---------------|---------|-----------|-----------|------------|---------------|-------------------|-----------------|------------------|----------------|----------------|--------------|--------------|-------------|---------------|---------------|----------------------|--------------|
| -CH           |         |           |           | ROT        |               |                   |                 |                  |                |                |              |              |             |               |               | meas. mode           | real time    |
| CH Output     | Output  |           | dead time | ROI<br>No. | peak<br>(keV) | centroid<br>(keV) | peak<br>(count) | gross<br>(count) | gross<br>(cps) | net<br>(count) | net<br>(cps) | FWHM<br>(ch) | FWHM<br>(%) | FWHM<br>(keV) | FWTM<br>(keV) | meas. time           | 24:00:00     |
| 1 109.564k    | 12.952k |           | 0.3       | ROI1 :     | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | data file size(byte) | 1.920M       |
|               |         |           | 0.0       | ROI2:      | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | meas, count          | 4/ 1         |
|               |         |           |           | ROI3 :     | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | HV output            | 848 V        |
|               |         |           |           | ROI4 :     | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | HV status            | shutdown     |
|               |         |           |           | ROI5 :     | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | set voltage(V)       | sweep(V/min) |
|               |         |           |           | ROI6:      | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | step1 : 850 V        | 600 V/min    |
|               |         |           |           | ROI7 :     | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | step2 : <b>0 V</b>   | 0 V/min      |
|               |         |           |           | ROI8:      | 0.00          | 0.00              | 0.000           | 0.000            | 0.000          | 0.000          | 0.000        | 0.0          | 0.000       | 0.000         | 0.000         | step3 : <b>O V</b>   | 0 V/min      |
|               |         |           |           |            |               |                   |                 |                  |                |                |              |              |             |               |               |                      |              |

図32 list データ計測・保存中画面

#### 7.2.5. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

取扱説明書 APU8101H

#### 7. 3. (オプション) PSD モード

7.3.1. 準備

前章 7.1. ヒストグラムモード の 7.1.1. 環境 から 7.1.4. 波形確認 まで、同様の準備 を行います。

7.3.2. 入力波形の確認

threshold 設定からの立ち上がり部分の点数、立ち下がりまでの点数を押さえておきます。

- 7.3.3. エネルギースペクトルの確認
- 前章7.1.ヒストグラムモード同様の確認を行います。
- 7.3.4. 設定
- Device タブにて下記の設定をします。
   mode list
   PSD ON/OFF チェック

| Device                                   | meas                                   | file                              | calibr                                         | ation                        | HV                                  | WAVE                               | Ξ                               |
|------------------------------------------|----------------------------------------|-----------------------------------|------------------------------------------------|------------------------------|-------------------------------------|------------------------------------|---------------------------------|
| APG750                                   | 3                                      |                                   |                                                |                              |                                     |                                    |                                 |
| config                                   |                                        | bas<br>res                        | eline<br>torer                                 | blr<br>fix data              | a th                                | reshold                            |                                 |
|                                          | GAIN<br>x2.0                           | Fa                                | er(µs)<br>st 🗸                                 | (digit)<br>7870              | (0<br>1                             | 1git)<br>5 🌲                       |                                 |
| timing<br>type<br>CFD 🗸                  | CFD<br>function<br>(multiple)<br>x0.21 | CF<br>n del<br>e) (di             | D<br>lay<br>git)<br>ns 🗸                       | CFD<br>walk<br>(digit)<br>20 | <b></b>                             |                                    | QDC<br>sum/peak<br>sum 🗸        |
| QDC<br>pretrigge<br>(ns)                 | QDC<br>filter<br>(ns)                  | QD<br>inte<br>rar                 | iC<br>egral<br>ige(ns)                         | QDC<br>full sca<br>(multip   | Q<br>le Ll<br>le) (d                | DC<br>D<br>digit)                  | QDC<br>ULD<br>(digit)           |
| -16ns                                    | , 10ns                                 | ~ 16                              | 0 韋                                            | 1/64                         | <u> </u>                            | :0 🜩                               | 8000                            |
| rise<br>startcnt<br>(digit)<br>4         | stop cnt<br>(digit)<br>11 🜩            | fall —<br>start (<br>(digit)<br>5 | nt stop<br>(digi                               | to<br>cnt st<br>t) (c        | otal —<br>tart cnt<br>digit)<br>5 🖨 | stop cnt<br>(digit)<br>10          | PSA<br>full scale<br>(multiple) |
| LIST-WA<br>list-wave<br>delay<br>(digit) | VE<br>list-wav<br>data<br>(ns)<br>4000 | e                                 | pileup re<br>pileup<br>reject<br>enable<br>OFF | eject<br>pile<br>pea<br>(dig | eup<br>ak judge<br>git)             | pileup<br>judge r<br>(digit)<br>15 | num                             |
| mode                                     |                                        | IP a                              | ddress                                         | 120                          |                                     |                                    | 011/057                         |
| iist                                     |                                        | 192                               | . 168. 10                                      | . 130                        |                                     | ✓ PSD                              | ON/OFF                          |

図33 configタブ

(2) リストデータを保存せずとも PSD 計測は可能です。リストデータを保存することで、このファイル を読み込むことで PSD グラフを生成することも可能です。 (3) PSD グラフにて下記の設定をします。

PSD axis type X軸とY軸に割り当てるデータを選択します。除算結果にて小数点以下も表現 した場合は商への倍率も設定します。計測中の変更は不可です。

cursor PSD グラフ内の着目エリアを設定します。計測中の変更も可能です。



#### 7.3.5. 計測開始

メニュー Config → Clear → Start の順にクリックします。実行後、PSD グラフと cursor area グラ フが更新されます。file save をチェックした場合、イベントを検知しリストデータを取得すると以下の file size(byte)が増加します。計測したデータは、メニュー File - save PSD にて保存できます。



図 35 list データ計測中、PSD グラフと cursor area グラフ更新

取扱説明書 APU8101H

7.3.6. 計測終了

計測を終了する場合は、メニュー Stop をクリックします。

# 8. 終了

メニュー File - quit をクリックします。確認ダイアログが表示された後、quit ボタンをクリックすると 本アプリは終了し、画面が消えます。次回起動時は、終了時の設定が反映されます。

# 9. ファイル

## 9.1. ヒストグラムデータファイル

- (1) ファイル形式カンマ区切りのCSV テキスト形式
- (2) ファイル名任意
- (3) 構成

Header 部、APU8101 部、HighVoltage 部、Calculation 部、Status 部、および Histogram 部 から成ります。

#### [Header]

| Memo               | メモ                                      |
|--------------------|-----------------------------------------|
| mode               | histogram、list など                       |
| meas, mode         | 計測モード。real time、live time または auto stop |
| meas. time(sec)    | 計測時間(秒)                                 |
| Real time(sec)     | リアルタイム(秒)                               |
| Live time(sec)     | ライブタイム(秒)                               |
| Dead time(sec)     | デッドタイム(秒)                               |
| Dead time ratio(%) | デッドタイム割合                                |
| Start Time         | 計測開始日時                                  |
| Stop Time          | 計測終了日時                                  |

#### [APU8101H]

| polarity                         | 入力するプリアンプ出力信号の極性         |
|----------------------------------|--------------------------|
| GAIN                             | アナログコースゲイン               |
| baselinerestorerfilter( $\mu$ s) | ベースラインリストアラ              |
| bìr fix data(digit)              | ベースラインリストアラ フィックス時 オフセット |
| timing type                      | タイミングタイプ                 |
| CFD function (multiple)          | CFDファンクション               |
| CFD delay(digit)                 | CFD ディレイ                 |
| CFD walk(digit)                  | CFD walk                 |
| QDC sum/peak                     | QDC サムor ピーク             |
| QDC pretrigger(ns)               | QDC プリトリガー               |
| QDC filter(ns)                   | QDC フィルター時定数             |
| QDC integral range(ns)           | QDC 積分範囲                 |
| QDC full scale (multiple)        | QDC フルスケール               |

| QDC LLD(digit)            | エネルギーLLD           |
|---------------------------|--------------------|
| QDC ULD(digit)            | エネルギーULD           |
| rise start cnt(digit)     | PSA ライズ スタート カウント  |
| rise stop cnt(digit)      | PSA ライズ ストップ カウント  |
| fall start cnt(digit)     | PSA フォール スタート カウント |
| fall stop cnt(digit)      | PSA フォール ストップ カウント |
| total start cnt(digit)    | PSA スタート カウント      |
| total stop cnt(digit)     | PSA ストップ カウント      |
| PSA full scale (multiple) | PSA フルスケール         |

| [HighVoltage]                  |                                     |
|--------------------------------|-------------------------------------|
| sweep step                     | 掃引段階(1から3のいずれか)                     |
| set voltage(V)                 | 本機器に設定されている出力電圧(V)(順に step1, step2, |
| step3の値)                       |                                     |
| set sweep voltage(V/min)       | 本機器に設定されている 1 分間の出力掃引電圧(V/min)(順    |
| 番は同上)                          |                                     |
| bias shutdown judge voltage(V) | バイアスシャットダウンとする閾値電圧                  |
| bias shutdown polarity         | バイアスシャットダウンと判定する極性                  |
| output voltage(V)              | 出力中の電圧モニタ値                          |
| output current(uA)             | 出力電流モニタ値                            |
| bias shutdown voltage(V)       | バイアスシャットダウンモニタ電圧                    |
| bias shutdown                  | バイアスシャットダウン状態                       |

[Calculation]

| ※以下ROI毎に保存   |                             |
|--------------|-----------------------------|
| ROLCH        | ROIの対象となった入力チャンネル番号         |
| ROI start    | ROI 開始位置(ch)                |
| ROI end      | ROI 終了位置(ch)                |
| Energy       | ROI間のピークのエネルギー値             |
| peak         | ROI間のピーク位置                  |
| centroid     | ROI間の中心位置                   |
| peak(count)  | ROI間のピークカウント値               |
| gross(count) | ROI間のカウント数の総和               |
| gross(cps)   | gross(count)÷計測経過時間         |
| net(count)   | ROI間のバックグラウンドを差し引いたカウント数の総和 |
| net(cps)     | net(count)÷計測経過時間           |
| FWHM(ch)     | ROI 間の半値幅(ch)               |
| FWHM(%)      | ROI間の半値幅                    |
| FWHM         | ROI間の半値幅                    |
| FWTM         | ROI 間の 1/10 幅               |

[Status] input rate(cps) トータルカウントレート throughput rate(cps) スループットカウントレート

[Histogram] calibration a calibration b ヒストグラムデータ 最大8192 点。

エネルギー校正係数\*a エネルギー校正係数+b 最大 取扱説明書 APU8101H

## 9.2. 波形データファイル

- (1) ファイル形式カンマ区切りのCSV テキスト形式
- (2) ファイル名任意
- (3) 構成

Header 部、APU101 部、HighVoltage 部、Status 部および Wave 部からなります (Data 部以外については、9.1. ヒストグラムデータファイル と同じ仕様です。

[Wave]

ウェーブデータ。最大4096点。

### 9.3. リストデータファイル

## (1) ファイル形式 バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式

(2) ファイル名

config タブ内 list file path に設定したファイルパスに、file number を0 詰め6 桁付加したものにな ります。例えば、list file path に Di¥data¥123456.bin、file number に 1 と設定した場合、 Di¥data¥123456\_000001.bin です。 list file size に到達すると、保存中のファイルを閉じます。その後、list file number を自動で1 つ繰り

#### (3) 構成

1 イベントあたり 128bit (16Byte、8WORD)

上げ新しいファイルを開き、データのファイル保存を継続します。

| Bit127 |               |           |        |                    | 112 |
|--------|---------------|-----------|--------|--------------------|-----|
|        |               | TOTAL     | _[150] |                    |     |
| Bit111 |               |           |        |                    | 96  |
|        |               | FALL[     | [150]  |                    |     |
| Bit95  |               |           |        |                    | 80  |
|        |               | RISE[     | 15.0]  |                    |     |
| Bit79  |               |           |        |                    | 64  |
|        |               | real time | [5540] |                    |     |
| 63     |               |           |        |                    | 48  |
|        |               | real time | [3924] |                    |     |
| 47     |               |           |        |                    | 32  |
|        |               | real time | e[238] |                    |     |
| 31     |               | 24        | 23     |                    | 16  |
|        | real time[70] |           |        | real time 固定小数[70] |     |
| 15 13  | 12            |           |        |                    | 0   |
| CH[20] |               |           | QDC[12 | 2O]                |     |

図 36 list データフォーマット (PSA 付きリスト)

• Bit 127 から Bit 112 TOTAL(波形全積分)値。符号無 16 ビット整数。

- Bit111からBit96 FALL(波形立下部分積分)値。符号無16ビット整数。
- Bit95からBit80
   RISE(波形立上部分積分)値。符号無16ビット整数。
- ・ Bit 79 から Bit 24 real time。 56Bit。 1Bit あたり 1ns。
- Bit23からBit16 real time 固定小数。8Bit。1Bit あたり 3.90625ps。
- Bit15からBit13 CH。チャンネル番号。3Bit。CH1は0、CH4は3。
- Bit12 から Bit0 QDC(積分値)。符号無 13 ビット整数。収集した波形にフィルタをかけ、スレッショルドを超えたところから、設定範囲間の波形の積算値。

## 9.4. (オプション)リスト波形及びリストパイルアップ波形データファイル

- (1) ファイル形式 バイナリ、ネットワークバイトオーダー(ビッグエンディアン、MSB First)形式
- (2) ファイル名任意
- (3) 構成

PSA 付きリスト(リストデータ部 128Bit の場合)

| Bit127                        |               |                    | 112 |
|-------------------------------|---------------|--------------------|-----|
|                               | TOTA          | _[15.0]            |     |
| Bit111                        |               |                    | 96  |
|                               | FALL          | [15.0]             |     |
| Bit95                         |               |                    | 80  |
|                               | RISE          | [15.0]             |     |
| Bit79                         |               |                    | 64  |
|                               | real time     | 9[55.40]           |     |
| 63                            |               |                    | 48  |
|                               | real time     | 9[39.24]           |     |
| 47                            |               |                    | 32  |
|                               | real tim      | e[23.8]            |     |
| 31                            | 24            | 23                 | 16  |
|                               | real time[70] | real time 固定小数[70] |     |
| 15 13                         | 12            |                    | 0   |
| CH[20]                        |               | QDC[120]           |     |
|                               |               |                    |     |
|                               | wave nun      | nber[15.0]         |     |
|                               |               |                    |     |
|                               | header        | [3116]             |     |
|                               |               |                    |     |
|                               | heade         | r[15.0]            |     |
| wave data[150] × wave number分 |               |                    |     |

図 37 list-wave 及びlist pile up データフォーマット(PSA 付きリスト)

- Bit127 から Bit112 TOTAL(波形全積分)値。符号無 16 ビット整数。
- Bit111 から Bit96 FALL (波形立下部分積分) 値。符号無 16 ビット整数。
- Bit95 から Bit80 RISE(波形立上部分積分)値。符号無 16 ビット整数。
- ・ Bit 79 から Bit 24 real time。 56 Bit。 1 Bit あたり 1 ns。
- Bit23からBit16 real time 固定小数。8Bit。1Bit あたり3.90625ps。
- Bit15からBit13 CH。チャンネル番号。3Bit。CH1は0、CH4は3。
- Bit 12 から Bit O
   QDC (積分値)。符号無 13 ビット整数。収集した波形にフィルタをかけ、スレッショルドを超えたところから、設定範囲間の波形の積算値。
- 波形データ wave number。16Bit。波形点数。
- ・ 波形データ header。32Bit。ヘッダーとして下記のCH情報が付加されます。
  - CH1 ヘッダー 0x57415630(=WAVO)

|         | CH2 ヘッダー                  | 0x57415631 (=WAV1)               |
|---------|---------------------------|----------------------------------|
|         | CH3 ヘッダー                  | 0x57415632 (=WAV2)               |
|         | CH4 ヘッダー                  | 0x57415633 (=WAV3)               |
| • 波形データ | wave data。波形 <sup>·</sup> | 1 点当たり 16bit。16384bit のオフセットがありま |
|         | す。wave number             | ~ 分の波形情報が付加されます。                 |

## 9.5. (オプション) PSD データファイル

- (1) ファイル形式カンマ区切りのCSV テキスト形式
- ファイル名
   任意
- (3) 構成

PSD 部と PSD 2D histogram 部と cursor area spectrum 部からなります。PSD 2D histogram 部と cursor area spectrum 部のデータは、カウントが 1 以上あるデータで可変長です。

[PSD]

| XAxisCursorRange   | カーソルでのX軸範囲開始チャネル及び終了チャネル |
|--------------------|--------------------------|
| YAxisCursorRange   | カーソルでのY軸範囲開始チャネル及び終了チャネル |
| Compress (x/16384) | 圧縮率のチャネル数                |

[PSD 2D histogram]

#FALL, TOTAL, Counts X軸に選択した List 内データ, Y軸に選択した List 内データ, 積算カウント 6952,9192,1

:

(可変長。最大8192×8192=67108864)

[cursor area spectrum]

FALL, Counts : X軸に選択した List 内データ, 積算カウント

6644,0

:

(可変長。最大8192)

# 10. Tool 機能

統合版アプリケーションTool編の取扱説明書ご参照ください。

# 11. トラブルシューティング

#### 11.1.接続エラーが発生する。

起動時またはメニュー config にて connection error エラーがする場合、ネットワークが正しく接続されていない可能性があります。この場合、以下を確認します。

- (1) 起動前の構成ファイル configini 内 IP がモジュール底面に設定され、[System] セクションの各ポ ート番号が下記のとおり定義されており、本アプリを起動して IP Address の表示が同じあるこ とを確認します。 [System] PCConfigPort = 55000 PCStatusPort = 55001 PCDataPort = 55002 DevConfigPort =4660 DevStatusPort = 5001 DevDataPort = 24 SubnetMask = "255.255.255.0" Gateway = "192.168.10.1" (2) PCのネットワーク情報が本機器と接続できる設定かどうかを確認します。本機器のデフォルト設 定は以下の通りです。 IP アドレス モジュール底面参照 サブネットマスク 255,255,255,0 デフォルトゲートウェイ 192,168,10,1
  - (3) UDP 接続用の PC 側の任意ポート番号が競合している。この場合は起動前の構成ファイル config.ini 内 Port に別の番号を定義します。
  - (4) イーサネットケーブルが接続されている状態で電源をONにします。
  - (5) コマンドプロンプトにて ping コマンドを実行し本機器と PC が通信できるかを確認します。
  - (6) 本機器の電源を入れ直し、再度 ping コマンドを実行します。
  - (7) ウィルス検出ソフトやファイヤーフォールソフトをOFF にします。
  - (8) PC のスリープなどの省電力機能を常に ON にします。
  - (9) ノートPCなどの場合、無線LAN機能を無効にします。

## 11.2. コマンドエラーが発生する

オプションの有無などによる、本機器のファームウェアとアプリケーションの組み合わせがあっていない 場合があります。弊社までお問い合わせください。

## 11.3. ヒストグラムが表示されない

メニュー Start を実行しても histogram タブのグラフに何も表示されない場合、以下の点を確認します。

- (1) calibration タブ内 ROI CH にて CH1 を設定します。
- (2) input total rate(cps)とthroughput rate(cps)がカウントしているか確認します。
- (3) fast trigger threshold や slow trigger threshold の値が小さすぎたり大きすぎたりせず、 input total rate(cps)と throughput rate(cps)のカウントを見ながら、100から30くらいま で設定を下げながら変更していき、2つの rate が近いカウントになるように調整します。
- (4) グラフのX軸とY軸を右クリックしてオートスケールにします。

## 11.4. IPアドレスを変更したい

弊社までお問い合わせください。

## 株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL.:029-350-8011 FAX.:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com