Hybrid Digital Spectrum Analyzer

APV8M44 APV8M24

Instruction Manual

Version 1.2.4 2022, December

TechnoAP Co., Ltd.

Add: 2976-15 Mawatari, Hitachinaka-shi, Ibaraki, Postcode: 312-0012 TEL: +81-29-350-8011 FAX: +81-29-352-9013 URL: http://www.techno-ap.com e-mail: info@techno-ap.com

Safety Precautions / Disclaimer

Thank you very much for purchasing the digitizer APV8108-14 (hereinafter "This board") of TechnoAP Co., Ltd. (hereinafter "We"). Please read this "Safety Precautions / Disclaimer" before using this device, be sure to observe the contents, and use it correctly.

We are not responsible for any damage caused by abnormality of device, detector, connected device, application, damage to failure, other secondary damage, even if accident caused by using this device.

Prohibited matter

- This device cannot be used for applications requiring special quality and reliability related to human life, accident.
- This device cannot be used in places with high temperature, high humidity and high vibration.
- Do not apply a power supply that exceeds the rating.
- Do not turn the power on while other metals are in contact with the board surface.

- If there is smoking or abnormal heat generation in this device, turn off the power immediately.
- This board may not work properly in noisy environments.
- Be careful with static electricity.
- The specifications of this board and the contents of the related documents are subject to change without notice.

Warranty policy

The warranty conditions of "our product" are as follows.

Warranty period	One year from date of purchase.
Guarantee contents	Repair or replacement will be carried out in case of breakdown even though you
	have used correctly according to this instruction manual within the warranty period
	We do not warranty if the cause of the failure falls under any of the following.
Out of warranty	1. Failure or damage due to misuse or improper repair or modification or
	disassembly.
	2. Failure and damage due to falling etc.
	3. Breakdown / damage in harsh environments (high temperature / high humidity,
	under zero, condensation etc.).
	4. Causes other than the above, other than "our products".
	5. Consumables.

- Contents -

Sat	fety f	Precautions / Disclaimer	2
1.		Overview	5
2.		Specifications	7
2.	1.	Specifications of DPP, from CH1 to CH4	7
2.	2.	Specifications of DSP, from CH5 toCH8	7
2.	З.	Common specifications	8
З.		Appearance	9
4.		Setup	
4.	1.	Installation of application	
4.	2.	Connection	
4.	З.	Set up of the network	
5.		Screen of the application	
5.	1.	Startup screen	14
5.	2.	Config tab	
5.	З.	file tab	
5.	4.	status tab	
5.	5.	wave tab	
5.	6.	spectrum tab	
5.	7.	timespectrum tab	
5.	8.	PSD tab *option	
6.		DPP initialization	
6.	1.	Connection	
6.	2.	Power ON	
6.	З.	Waveform Measurement	
6.	4.	Energy Spectrum Measurement	
6.	5.	List and Time Difference Spectral Measurements	41
6.	6.	Coincidence and anti-coincidence outputs	
7.		DSP initialization	
7.	1.	Connection	
7.	2.	Power ON	
7.	З.	Confirmation of preamplifier output signal	
7.	4.	Analog fine gain and analog pole zero adjustment of preampli	fier output signal
		45	
7.	5.	FAST filter setting	
7.	6.	SLOW filters setting	
7.	7.	Setting the SLOW threshold	
8.		Measurement	
8.	1.	Setting	

8.	2.	Start measurement	
8.	З.	Histogram mode	53
8.	4.	List mode	
8.	5.	Stop measurement	54
9.	Q	Uit	54
10	•	File	
10	. 1.	Histogram data file	
10	. 2.	Waveform data file	
10	. 3.	List data file	
10	. 4.	List-Wave data file *Option	61
10	. 5.	PSD data file *Option	63
11	•	Troubleshooting	64
11	. 1.	Connection error occurs	64
11	. 2.	Command error occurs	64
11	. 3.	Histogram is not displayed	
11	. 4.	Change IP address	
12	•	Performance of APV8M44、8M24	
12	. 1.	Resolution of DSP	

1. Overview

TechnoAP's Digital Spectrum Analyzer APV8M44 and APV8M24 are hybrid digital signal processors with real-time DPP (Digital Pulse Processing) function and DSP (Digital Signal Processor) function with high-speed and high-resolution ADC.

Figure 1 Block diagram

The APV8M44 is equipped with DPP from CH1 to CH4, and in addition to real-time signal analysis using a 500MHz high-speed A/D converter, it performs high-speed processing with no dead time by pipeline signal processing to achieve high time resolution and high throughput.

The APV8M24 is equipped with DPP in CH1 and CH2, and in addition to real-time signal analysis using a 1GHz high-speed A/D converter, it performs high-speed processing without dead time by pipeline signal processing to achieve high time resolution and high throughput.

The APV8M44 and APV8M24 are equipped with a DSP from CH5 to CH8, which uses a 62.5 MHz, 14 Bit A/D converter, and the output signal from the detector preamplifier is processed in real-time by a trapezoidal filter (Trapezoidal Filter) processing in real-time by a pipelined FPGA architecture. The configuration integrates a spectroscopy amplifier and MCA, and performs pulse shaping using the latest digital signal processing techniques instead of traditional analog methods In addition to trapezoidal filter, it has functions such as timing filter amplifier, CFD, waveform digitizer, etc.

The standard configuration includes coincidence and anti-coincidence terminals, allowing a high degree of freedom in settings such as coincidence time and CH combinations.

This document describes an application for measurement and control of our digital spectrum analyzer products (hereafter referred to as "the Application")

* In the text, "CH" is used for the signal input channel and "ch" for the number of bins and is case-sensitive.

* In the text, "list" and "event" have the same meaning.

* The APV in the model's name indicates the VME standard size board type. A separate VME power supply rack (such as our APV9007) is required to supply power to this board type. In addition, the type of model in which this board is housed in a unit (chassis) and AC power supply can be used directly is marked with APU instead of APV. As an example, the model in which the VME-type APV8M44 is installed in a unit is APU8M44. (This manual also includes descriptions of the APU8M44 and APU8M24.

* Additional functions can be added to this device as options. (In this document, the function part is specified as (optional).

2. Specifications

2. 1. Specifications of DPP, from CH1 to CH4

- Number of channel 2CH, APV8M44
- 4CH, APV8M24
- Input range ±1V
 - Input impedance 50Ω
- Coarse gain x1、x3
- (2) ADC
 - Sampling frequency
 S00MHz, APV8M44
 1GHz, APV8M24
 Resolution
 SNR
 68.3dBFS@605MHz
- (3) Performance
 - QDC output 2Mcps and more
 - Time resolution
 7.8125ps@500MHz, 3.90625ps@1GHz
- (4) MCA
 - ADC gain 4096、2048、1024、512、256 channel

2. 2. Specifications of DSP, from CH5 toCH8

(1) Analog Input

Number of channel	4CH
 Input range 	<u>+2</u> V
 Input impedance 	1kΩ
Coarse gain	×1、×4、×10、×20
 Frequency band 	DC to 25MHz

- (2) ADC
 - Sampling frequency 62.5MHz
 - Resolution
 16bit
 - SNR 85dB@3MHz
- (3) Performance
 - Resolution 1.70keV@1.33MeV, typical value
 - Spectrum broadening $12\,\%$ or less, 1Kcps to 100Kcps
 - Integral non-linearity ±0.025%, typical value
 - Pulse pare resolution 1.25 × (Risetime + Flat top time)
- (4) MCA
 - ADC gain 16384、8192、4096、2048、1024、512、256 channel

Trigger timing

Digital pulse shaping

(5)

	CFD (Constant Fraction Discriminator Timing)
 Time resolution 	62.5ps
2. 3. Common s	pecifications
(1) Communication int	erface
• LAN	Ethernet TCP/IP 1000Base-T and UDP
(2) Form	
VME type	APV8M44、APV8M24
Desktop type	APU8M44、APU8M44
(3) Current consumption	on
* Case of APV8M44	
+5V	4.0A Max.
+12V	1.0A Max
-12V	0.5A Max.
(4) External dimension	IS
 VME type 	20 (W) x 262 (H) x 187 (D) mm
 Desktop type 	300 (W) × 56 (H) × 335 (D) mm
(5) Weight	
 VME type 	About 460 g
 Desktop type 	About 3360 g
(6) Computer environm	nent
• OS	Version Windows 7 and more、32bit or 64bit and more
 Network interface 	
 Screen resolution 	FHD (1920 x 1080) recommended

 LET (Leading Edge Timing) .

3. Appearance

Photo 1 APV8M24

(1)LED P (green) lights up when power is turned ON, V (orange) and E (red) are not used (2)LEMO 00.250 connector for anode output signal input. Input range ±1V, course gain CH1~4 selectable from app. x1 or x3, input impedance 50Ω . CH1 and CH2 for APV8M24. (3) LEMO 00.250 connector for preamp output signal input. Input range ±2V, x1, x4, x10, CH5~8 x20 course gain selected from application, input impedance $1k\Omega$. (4)LEMO 00.250 connector for monitor output; DAC output of signals, etc. during DSP MONI processing for CH5-8. (5) COIN LEMO 00.250 connector for coincidence output. When a coincidence is detected on any CH, the LVTTL signal is output for an arbitrary time width. (6) LEMO 00.250 connector for anti-coincidence output. When an anti-coincidence is ACOIN detected on any CH, the LVTTL signal is output for an arbitrary time width. (7)LEMO 00.250 connector for external clock signal input. An external clock can be used CLK-I to synchronize with an external device. When using an external clock, see "*When using an external clock" below. (8) CLK-O LEMO 00.250 connector for external clock signal output; outputs 25 MHz LVTTL signal. (9)GATE LEMO 00.250 connector for external GATE signal input, TTL or LVTTL signal input. Data acquisition is enabled while the input is "High". (10) VETO LEMO 00.250 connector for external VETO signal input, TTL or LVTTL signal input. Disables data acquisition while "High".

- (11) CLR LEMO 00.250 connector for external CLEAR signal input; TTL or LVTTL signal can be input to GATE or VETO to apply coincidence to the entire board. Clears the time counter data on the rising edge of "High".
- (12) AUX
 LEMO 00.250 connector for optional output; LVTTL OR logic (High if even 1 of all CHs is detected) is output.
 (13) LAN
 RJ45 connector for Ethernet cable. Ethernet TCP/IP 1000Base-T.

Photo 2 APV8M24, All CHs, no attenuator, analog pole zero adjustable through differential circuit.

- (14) Jumper for attenuator Yellow frame in the photo above. When the upper jumper is present and the lower jumper is not present, no attenuator is set (default). When the upper jumper is not present and the lower jumper is present, the attenuator is set to 1/10.
- (15) First-stage differential circuit jumper Light blue frame in the photo above. Without the jumper, the signal goes through the first-stage differential circuit to shorten the decay internally (default). When a jumper is attached, the signal is directly converted to analog-to-digital (AD) without passing through the differential circuit.
- (16) Analog pole zero jumper Orange frame in the photo above. When the jumper is present, the analog pole zero circuit is adjustable and is used for resistive feedback preamplifier output signal input, etc. (default). Without jumper, the analog pole zero circuit is not used and cannot be adjusted. Used for transistor reset preamplifier output signal input, etc.
- (17) Evacuation jumper Purple frame in the photo above. For evacuation when the above jumper is removed.

* When external clock is used

With the power off, change the jumper JP21 on the board to 1-6: CPU, input a 25MHz, 50% duty cycle LVTTL or TTL signal to CLK-I, and then turn the power on.

Photo 3 Position of JP21

Photo 4 When using internal clock (3-4: INT jumper)

Photo 5 When using external clock (1-6: CPU jumper)

4. Setup

4. 1. Installation of application

This application runs on Windows. When using this application, it is necessary to install the EXE (executable format) file of this application and the LabVIEW runtime engine from National Instruments on the PC to be used.

Installation of this application is performed by the installer included on the accompanying CD. The installer includes the EXE (executable format) file and the LabVIEW runtime engine, which can be installed at the same time. The installation procedure is as follows.

- (1) Log in to Windows with administrative privileges.
- (2) Run setup.exe in the Installer folder on the supplied CD-ROM. Proceed with the installation in an interactive manner. The default installation destination is C:¥TechnoAP (3) In this folder, the executable file of this application and the configuration file config.ini, in which the setting values are saved, will be installed.
- (3) Start button TechnoAP Run APP8M24.

To uninstall, go to Add or Remove Programs and select APP8M24 to remove it.

4. 2. Connection

Connect this device to a PC with an Ethernet cable; use a crossover cable depending on the PC. When using a hub, use a switching hub.

4. 3. Set up of the network

Check the communication status of this device and this application by the following procedure.

(1) Turn on the PC and change the network information of the PC.

IP address	:	192.168.10.2 * Addr	resses not assigned to this device
Sub-net mask	:	255.255.255.0	
Default gateway	:	192.168.10.1	

- (2) Turn on the VME Crate power supply and wait for about 10 seconds after turning on the power.
- (3) Check the communication status between the PC and the device by executing the ping command at the Windows command prompt to see if the device and the PC are connected. The IP address of the device is located on the board or on the back of the unit. The factory default network information for this device is as follows.

IP address	:	192.168.10.128
Sub-net mask	:	255.255.255.0
Default gateway	:	192.168.10.1

> ping 192.168.10.128

C:¥WINDOWS¥system32¥cmd.exe	_		×	
Microsoft Windows [Version 10.0.19042.1083] (c) Microsoft Corporation. All rights reserve	d.			^
C:¥Users¥Administrator>ping 192.168.10.128				
192.168.10.128 に ping を送信しています 32 バ 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間 192.168.10.128 からの応答: バイト数 =32 時間	イトの <1ms T <1ms T <1ms T <1ms T	データ TL=32 TL=32 TL=32 TL=32 TL=32	:	
192.168.10.128 の ping 統計: パケット数: 送信 = 4、受信 = 4、損失 = 0 ラウンド トリップの概算時間 (ミリ秒): 最小 = Oms、最大 = Oms、平均 = Oms	(0% の	損失)、		
C:¥Users¥Administrator>				
				-

Figure 2 Confirm communication connection, execute ping command

Launch this application. Search for APP8M24 from the shortcut icon APP8M24 on the desktop or the Windows button and launch it.

(If an error message is displayed when this application is launched, stating that connection with this device has failed, please refer to the troubleshooting described below.

5. Screen of the application

5. 1. Startup screen

When this application is run, the following startup screen will appear.

Figure 3 Startup screen (may differ from image due to options and updates)

Menu

File - open config	Load configuration file
File - open histogram	Load histogram data file
File - open wave	Load waveform data file *option
File - open PSD	Load PSD data file * option
File - save config	Save current settings to a file
File - save histogram	Save current histogram data to file
File - save wave	Save waveform data file *option
File - save PSD	Save PSD data file * option
File - save image	Save this application screen as PNG format image
File - convert binary list file to csv	Open screen to convert list data file to CSV format
File - quit	Quit application
Edit - copy setting of CH1	CH1 and CH5 settings in CH tab are reflected in other CH settings
Edit - copy setting of CH1 to all module	CH1 and CH5 settings in the CH tab are reflected in the settings of
	all other board

	Edit - IP configuration	Change th	e IP address of this device
	calibration	Execute w	hen there is a disturbance in the wave from CH1 to CH4.
	Config	Set all item	ns to this device
	Clear	Initialize his	stogram data in this device
	Start	Start meas	surement to this device
	Stop	Stop meas	surement to this device
devi	ce	Select the	device to be measured。
IP ad	ddress	IP Address	s. IP address defined in the configuration file and selected in Module
men	าด	You can w	rite notes.
mod	e	The follow	ing modes can be selected.
		hist I	Histogram mode stores the wave height values of the preamplifier output
		:	signal in up to 4096 channels for CH1 to CH4, and up to 16384 channels
		1	for CH5 to CH8, and creates a histogram.
		wave `	You can check waveforms during signal processing like an oscilloscope.
		list I	List mode is a mode in which the time stamp, wave height value, and
		(CH number of the preamplifier output signal are used as one event data,
		ä	and the data is continuously transferred to the PC.
mea	surement time	Sets the m	neasurement time.
list re	ead byte (byte)	Specifies t	he unit byte for reading list data. Note that if the value is too small, the
		readout wi	Il not be complete, and an error will occur when outputting high counts.
acq. LED Flashing during measurement		uring measurement	
error LED Error indication		ation	
mod	e	Displays th	ne currently selected mode
mea	surement time	Displays th	ne set measurement time
mea	surement mode	Measurem	nent mode, displaying real time or live time
		real time	Real time (actual measurement time) of the effective first CH. Equal
			to the measurement time at the end of measurement.
		live time	Live time (valid measurement time) of the first valid CH. real time -
			dead time.
file s	ize (Byte)	Displays th	ne capacity (in Bytes) of the file in which the list data is being saved.
Tab			
	config	CH setting	s and measurement settings
	file	File-related	d settings.
	status	Displays th	ne status of each CH.
	wave	Display of	input waveforms, trapezoidal processed waveforms, etc.

spectrum Display of spectrum in hist mode.

timespectrum When time spectrum on/off is checked in list mode, time spectrum is created from the list data and displayed. Note that if you try to create a time spectrum at high counts, the PC processing will not be able to keep up and an error will occur in data

acquisition.

5. 2. Config tab

5. 2. 1. CH tab

DPP and DSP common settings

config file status	
	CH ADVANCE OPTION
CH LLD ULD enable polarity (digit) (digit)	DPP analog baseline CFD CFD CFD QDC QDC <th< td=""></th<>
CH1 : pos ∨ 10 ♦ 4095 ♦ CH2 : pos ∨ 10 ♦ 4095 ♦	CH1 :X3 V 4µ V 30 IP CFD V 10ns V 20 IP IP <t< th=""></t<>
CH5 : pos v 10 0 8191 0	DSP analog analog analog fast slow slow slow slow digital digital gain pole ADC fast fast trigger risetime flat top pole trigger coarse fine inhibit timing CPD CPD dsp reject
CH7 : pos ↓ 10 ♦ 8191 ♦ CH8 : pos ↓ 10 ♦ 8191 ♦	(multiple) 2ero ^{gain} dff integral threshold (n) time(ns) 2ero threshold gain gain width(us) select function delay(ns) bit sel enable CH5 : x10 ↓ 220 ♦ 8192 ↓ 100 ↓ 100 ↓ 20 ♦ 6000 ♦ 800 ♦ 439 ₦ 30 ₦ 322 ↓ 0.4420 ♥ 10 ♥ CFD ↓ 0.125 ↓ 48 ↓ Ge ↓ OFF ↓ 0.125 ↓ 10 ↓ 100 ↓ 100 ↓ 20 ♥ 6000 ♥ 800 ♥ 30 ♥ 30 ♥ 30 ♥ 30 ♥ 30 ♥ 30
_	CH7 : 10 20 812 10 100 20 600
	DAC monitor type
	CH5-slow v

ON enable	CH Availabilit	ty.					
polarity	The polarity of	The polarity of the input signal. pos is positive polarity, neg is negative polarity.					
LLD (digit)	Energy LLD (Lower Level Discriminator). Unit is digits (ch). Set to a value greater						
	than the show	w trigger threshold and less than the ULD.					
ULD (digit)	Energy ULD	(Upper Level Discriminator). Unit is digits (ch). Ch above this threshold					
	is not counte	d; set to a value greater than LLD.					
DAC monitor type	DAC output	waveform selection. the DAC output signal can be viewed on an					
	oscilloscope	to check the internal processing status.					
	preamp	Differentiated signal from the preamplifier output signal.					
	fast	FAST filter signal.					
	slow	SLOW filter signal.					
	CFD	CFD signal					
CH tab	Settings related	ed to DPP's CH					
analog coarse gain	Analog coars	e gain: select from 1x or 3x.					

baseline restorer filter

Sets the time constant for the Baseline Restorer; choose from Ext (Excluded, no AutoBLR), Fast, 4µs, 85µs, 129µs, or 260µs. Normally set to 85µs.

threshold (digit)

Sets the threshold for waveform acquisition of the input signal. The unit is digits. The setting range is from 0 to 8191. set it to a value greater than the noise level while viewing the raw waveform in wave mode.

threshold TDC, QDC calc enable rise edge

Set above noise mm

Constant fraction timing of APV8M44 and APV8M24 is realized by digital signal processing using FPGA.

$$s(n) = fv(n) - v(n - delay)$$

The digital signal processing algorithm we have developed uses a polynomial approximation based on the least-squares method from sampled waveform data.

$$L(a, b, c) = \sum_{i=1}^{N} \{y_i - (ax_i^2 + bx_i + C)\}^2$$

The time information is calculated more precisely by finding the parameters a, b, and c that minimize the time information (i.e., the time information of the time of the data) and obtaining interpolation of the zero crossing point (WALK) for CFD and the threshold point for leading edge.

Furthermore, by using FPGAs to perform pipelined calculations, a series of calculations is performed very quickly, with a calculation time of less than 100 ns, resulting in low dead time and high throughput.

timing type

Select the waveform to be used when time stamping the event detected (time stamp) from CFD waveform or LE (raw waveform).

CFD: Constant Fraction Discriminator Timing

For the different preamp waveforms, a and b in the figure below, the following waveforms c, d and e, f and g, h are generated.

Waveforms c, d: Waveforms a and b multiplied by CFD function and inverted

Waveforms e, f: Waveforms a and b delayed by CFD delay

Waveforms g, h: Waveforms c and e plus waveforms d and f

CFD, the zero-crossing timing of waveforms g and h, is characterized by the fact that it is constant even if the wave height changes, as long as the start time of the rise of the waveform is the same.

- Figure 5 Thinking of Constant Fraction Disicriminator Timing
 - LE Leading Edge

This is the timing when a certain trigger level t is reached. (Trigger acquisition timing is different if the slope of the rise is different, as in the case of 'a' and 'b', and the time is also different.

CFD function Magnification to reduce the original waveform for CFD waveform shaping. 0.03x, 0.06x, 0.09x, and (multiple) Select from 0.12x, 0.15x, 0.18x, 0.21x, 0.25x, 0.28x, 0.31x, 0.34x, 0.37x, 0.40x,

Select from 0.12x, 0.15x, 0.18x, 0.21x, 0.25x, 0.28x, 0.31x, 0.34x, 0.37x, 0.40x, 0.43x, 0.46

CFD walk (digit)

Set the threshold value for time stamping. The unit is in digits, and the value is set near the 0 crossing position while watching the CFD waveform in wave mode.

signal type Selects the input waveform type. fast sig should be set for NIM or Timing signal input. For other input signals, set to "normal" sig.

CH tab Settings related to DSP CH

- analog coarse gain
 Select from 1x, 2x, 5x, or 10x. Amplifies the captured preamplifier output signal internally.
 analog pole zero
 This setting corrects for overshoot or undershoot of the internal falling edge in the preamplifier output signal input to this device. The setting range is 0 to 255.
- ADC gainADC gain (channels). select from 16384, 8192, 4096, 2048, 1024, 512, 256
channels (ch). the number of divisions on the horizontal axis of the spectrum graph.fast diffSelect the constant of the differential circuit of the FAST system from ext (excluded,
no filter), 20, 50, 100, 200, and 500. For detectors with fast rise time, select ext or
20; for Ge semiconductor detectors, etc., set 100 or 200.
- fast integral Select the constant of the FAST-based integrating circuit from ext (excluded, no filter used), 20, 50, 100, and 200. For detectors with fast rise time, select ext or 20; for Ge semiconductor detectors, etc., set 100 or 200.
- fast trigger threshold Threshold for the timing of the start of waveform acquisition using a FAST-type filter. The unit is DIGIT; the setting range is 0 to 8191. The FAST filter waveform is generated by differential and integral processing of the timing filter amplifier circuit based on the preamplifier output signal. When the waveform exceeds this threshold value, the timing for acquiring time information at that point and the timing for starting waveform generation in the spectroscopy amplifier circuit are acquired. It is mainly related to time acquisition (time stamp). If this threshold value is too small, noise is easily detected, and input count rate (cps) will increase.
- slow risetime (ns) Rise time of a SLOW-type filter. This is the rise time to reach the upper bottom of the SLOW-type (trapezoidal) filter in the figure below. Shorter values tend to have poorer energy resolution but more throughput, while longer values tend to have better energy resolution but less throughput. Since the peaking time of linear amplifiers is often 2.0 to 2.4 x time constant, a rise time of about twice the time constant of the linear amplifier will give similar resolution. The default setting is 6000 ns. This corresponds to a shaping time of 3 µs for a linear amplifier.
- slow flat top time (ns) Flat top time of a SLOW-type filter. This is the time at the top of the SLOW-type (trapezoidal) filter in the figure below. The length of the trapezoidal top part is used to adjust the wave height error caused by variations in the rise (fall) of the preamplifier output signal. The setting value is from 0 to 100% of the rise (fall) time of the preamplifier output signal and should be twice the slowest time. The default setting is 700 ns. In this case, the slowest rise (fall) time is assumed to be 350ns.

- * The throughput of the DSP is shown in the following equation (slow rise time + slow flattop time) × 1.25
- slow pole zero SLOW-type pole zero cancellation; the falling undershoot or overshoot of the SLOW-type filter can be reduced by setting this value appropriately. The default value is 680. Since this value varies depending on the detector, connect the MONI terminal on the front panel to the oscilloscope, select the SLOW series filter in the DAC monitor type, and adjust the SLOW series filter so that the falling edge of the SLOW series filter is flat.

Figure 7 SLOW type (trapezoidal) filter

* The figure on the right shows an example where there is an undershoot in the SLOW filter and pole zero is not set correctly. In this case, lowering the value of slow pole zero from the current setting will lift the undershoot to the upper side.

slow trigger threshold

Threshold value for the timing of the start of waveform acquisition for the Slow system filter. Unit is digits. The setting range is from 0 to 8191. Set this value up or down by about 10 digits above the noise level where the out rate (cps) increases. Set this value below the LLD described below. When the generated SLOW filter waveform exceeds this threshold value, the wave height value at the preset time (slow rise time + slow flattop time) is secured.

Figure8 Example of LLD and ULD configuration

* The above figure shows an example where the LLD is set to 955 and the ULD to 1045; you can see that the areas smaller than the LLD and larger than the ULD are not measured.

digital coarse gain	The gain	s digitally selected from 1x, 2x, 4x, 8x, 16x, 32x, 64x, and 128x. In the						
	case of a	trapezoidal filter, the integral circuit is calculated by sum-of-products						
	operations	; the larger the slow rise time, the greater the number of sum-of-products						
	operations and the larger the value, and the smaller the value, the smaller. This							
	value is us	sed in conjunction with the slow rise time setting.						
digital fine gain	This sets the digital fine gain, which ranges from 0.3333 to 1. The setting range							
	from 0.33	33 to 1. Like digital coarse gain, it is used for correction. The resulting						
	histogram	can be used to adjust the peak position of the histogram.						
inhibit width (μs)	Dead tim	Dead time width from the time of reset detection for transistor reset type						
	preamplifi	er. The INHIBIT signal from the detector is processed internally without						
	input and	no counting is performed during this period.						
timing select	Select the	timing acquisition method from LET (Leading Edge Timing) or CFD						
	(Constant	Fraction Disicriminator Timing) to determine the time when the event						
	was detec	ted (time stamp). See above for details.						
CFD function	Magnification for reducing the original waveform for CFD calculation; select from							
	0.125, 0.2	5, 0.375, 0.5, 0.625, 0.75, and 0.875. The default is 0.25 to 0.625 times.						
CFD delay	Select the time to delay the original waveform for CFD calculation from 16, 32, 48,							
	64, 80, 96	, 112, and 128ns. The default is 48 to 80 ns.						
dsp bit sel	Select Ge	e or SDD according to the amplitude and other characteristics of the						
	preamplifi	er output signal to be input; Ge is selected when there is a certain amount						
	of amplitu	de, such as in Ge semiconductor detectors, and SDD is selected when						
	the amplit	ude is very weak.						
DAC monitor type	Selects th	e combination of target CH and waveform for DAC output. Of the						
	waveform	s processed inside the DSP based on the signal from the selected input						
	CH, the se	elected type of waveform signal is output from the MONI pin. By viewing						
	this signa	I on an oscilloscope, the processing status inside the DSP can be						
	checked.							
	pre amp	Differentiated signal from the preamplifier signal. Used to confirm that						
		the energy range to be measured is within 1V when taken internally,						
		and to adjust pole zero.						
	fast	FAST filter signal						
	slow	SLOW filter signal. Used for pole zero adjustment after waveform						
		shaping processing.						
	CFD	CFD signal, which allows the user to check the CFD delay and						
		function setting status when using CFD timing.						

5. 2. 2. ADVANCE tab

Settings related to PSA (optional) CH of DPP

CH	A	DVA	ICE	OP	TION																								
	PP P H1 H2	SD :	rise start ((digit 10 10	cnt) ≑	rise stop (digit 15 15	cnt)	fall start (digit 10 10	cnt t) ≑	fall stop (digit 30 30	cnt ;)	total start (digi 5 5	cnt t)	total stop (digi 20 20	cnt it)	PSA full s (mu 1/1 1/1	scale Itiple)]	CH1 CH2	den :	ce coinc time (ns) 10 10	♦	coinc gate v (ns) 300	width	CH1 CH2	oinc :	idence ancoir time (ns) 10 10	ic ¢	ancoir gate w (ns) 20	nc ridth

Settings related to PSA (Pulse Shaping Analysis) calculation.

In the PSA operation, if the input waveform is negative polarity, it is inverted to positive polarity, and the waveform is always considered positive polarity.

rise start cnt The start position of the target range for the integral value rise of the rising edge. The setting range is from 1 to 498 (498ns=498 x 1ns).

rise stop cnt This is the end position of the target range of the rise integral value rise. Set the range of integration from the rise start cnt. The setting range is from 1 to 16383 (16363ns=16383 x 1ns).

Calculation example of rise value:

In the case of the setting threshold: 50, rise start cnt: 5, rise stop cnt: 8, PSA full scale: 1/1, the green line in the figure below is integrated for 8 points from 5 points before the point where the threshold is exceeded. The integral value is multiplied by PSA full scale and is the rise value of the list data.

Figure 10 Example of rise start cnt and rise stop cnt settings

fall start cnt The start position of the target range for the integral value fall of the falling edge. The setting range is from 1 to 16383 (16383ns=16383 x 1ns). Set a value smaller than the fall stop cnt described below.

fall stop cnt This is the end position of the target range of the fall integral value fall. Set the range to be integrated from the fall start cnt. The setting range is from 1 to 16383 (16383ns=16383 x 1ns). Set a value greater than the fall start cnt.

Calculation example of fall value:

In the case of the settings threshold: 50, fall start cnt: 5, fall stop cnt: 25, PSA full scale : 1/1, the FALL value exceeds threshold and is integrated from the 5th point to the 25th point in the blue line in the figure below. The integrated value is multiplied by PSA full scale to obtain the fall value of the list data.

Figure 11 Example of fall start cnt and fall stop cnt settings

total start cnt The start position of the target range of the total waveform integral value. The setting range is from 1 to 498 (498ns=498 x 1ns).

total stop cnt This is the end position of the target range of the total waveform integral value. Set the range to be integrated from the total start cnt mentioned above. The setting range is from 1 to 16383 (16383ns=16383 x 1ns).

Calculation example of total value:

In the case of the settings threshold: 50, total start cnt: 5, total stop cnt: 50, and PSA full scale : 1/1, the integral value is multiplied by the red line in the figure below for 50 points from 5 points before the point where the threshold is exceeded. The integral value is then multiplied by PSA full scale to obtain the TOTAL value of the list data.

Figure 12 Example of total start cnt and total stop cnt settings

PSA full scale Sets the reduction factor for the rise, fall, and total values of the list data. If the result of each integration exceeds 65535, this reduction factor is increased to keep the result within 65535.
 Coincidence part coinc time (ns) Set the effective time for each CH to detect an input signal and wait for the other CHs to detect it as coincidence. The unit is ns, and the setting range is from 16ns to 524µs. When all CHs become valid, the signal becomes coincidence, and the LVTTL logic signal is output from the COIN pin for the

coinc gate width (ns) Set the effective time for each CH to detect an input signal and wait for the other CHs to detect it as coincidence. The unit is ns, and the setting range is from 16ns to 524µs. When all CHs become valid, the signal becomes coincidence, and the LVTTL logic signal is output from the COIN pin for the period of coinc gate width (see below).

period of coinc gate width (see below).

anti-coincidence part ancoinc time (ns) When one CH detects an input signal and the other CHs do not, it becomes anticoincidence and outputs an LVTTL logic signal from the ACOIN pin for the duration of the anticoinc gate width described below. The setting time of anticoincidence is set for each CH. The unit is ns, and the setting range is from 16ns to 524µs.

ancoinc gate width (ns) Sets the time width to hold the state after anticoincidence is detected. The unit is ns, and the setting range is from 120 ns to 524 μs. During this period, an LVTTL logic signal is output from the ACOIN pin.

time spectrum ON/OFF Enable/Disable the display of time difference spectrum. If you try to generate a time difference spectrum at high count output, the CPU load will increase and errors may occur in the list data acquisition.

PSD ON/OFF (Option) Enable/Disable to display PSD graph if checked when acquiring data in list mode. If you try to generate a time difference spectrum at high count output, the CPU load will increase and errors may occur in the list data acquisition.

5. 2. 3. **OPTION** tab

Waveform data can be added during list mode

H	ADVAN	CE	OP	IOIT	N			
_lis	t wave list wave delay (digit)	li c (ist-wav data (digit)	ve	list-wave compress (ns)	;	list format	
[1	Η	400	+	1/1	\sim	LIST	\sim
ľ	1	ali	400		1/1	\sim	LIST	\sim
	1	-	400	 	1/1	~	LIST	~
	1		400 400	≑	1/1 1/1	>	LIST LIST	>
	1 4 1 4 1 4		400 400 400	<!--</td--><td>1/1 1/1 1/1</td><td>> ></td><td>LIST LIST LIST</td><td>> ></td>	1/1 1/1 1/1	> >	LIST LIST LIST	> >
			400 400 400 400	 <	1/1 1/1 1/1 1/1	> > >	LIST LIST LIST LIST	> > > >
			400 400 400 400	♦ ♦ ♦	1/1 1/1 1/1 1/1	> > > >	LIST LIST LIST LIST ✓ LIST	> > >

Figure 13 list-wave related settings

LIST-WAVE part	
list-wave delay (digit)	Setting for list-wave mode. Adjusts the delay of the acquisition waveform. The
	setting range is from 0 to 30 digits. Read the acquired waveform and adjust the
	signal rise position.
list-wave data (digit)	Parameters for list-wave mode. Sets the number of data points for waveform
	output. The setting range is from 8 to 1000 points.
list-wave compress	Parameter for list-wave mode, allowing you to specify the degree of compression
	of the X-axis time scale. 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256 can be
	selected. Used to display waveforms with long fall times.
List-format	Select the output format in list mode from 2: list data only or list data + wave data.

5. 3. file tab

config file status	
-file	list save
histogram continuous save	list file path C:¥Data¥listbin
histogram file path C:¥Data¥histogram.csv	list file number file name 0 Ist_000000.bin
histogram file save time(sec)	

Figure 14 file tab

histogram save	Saves the histogram data displayed in the histogram tab at the end of								
	measurement to a file. The file is saved in the format described below. Valid only								
	in histogram mode.								
histogram continuous save	Sets whether the histogram data is continuously saved to file at set time intervals.								
	This setting is valid only when Histogram mode is selected.								
histogram file path	Set the absolute path of the histogram data file. No extension is also possible.								
	NOTE The file will not be saved with this file name but will be formatted as follows								
	based on this file name.								
	Example: If you set histogram file path as C:¥Data¥histogram.csv and histogram file								
	save time(sec) as 10, and the date and time is 2010/09/01 12:00:00, it will start saving								
	data as C:\Data\Data\Data\Data histogram_20100901_120000.csv. After 10 seconds, it saves the								
	data in a file named C:¥Data¥histogram_20100901_12000010.csv								
	* 120010 above may become 120009 or 120011.								
histogram file save time (s	sec) Sets the time interval for continuous storage of histogram data. The unit is								
	seconds. The setting range is from 5 to 3600 seconds.								
list save	Sets whether the list data is saved in a file or not. Valid only when list mode is								
	selected.								
list file path	Set the absolute path of the listing data file. No extension is also possible.								
	${}^{*}\textbf{NOTE}{}^{*}$ The file will not be saved with this file name, but will be formatted as follows								
	based on this file name								
	Example: If the list file path is set to C:¥Data¥listbin and the list file number is 0								
	as described below, data saving will start with the file name								
	C:¥Data¥list_000000.bin								
list file number	Sets the starting number of the number appended to the list data file, from 0 to								

9999999, reset to 0 if the number exceeds 9999999.

file name

The file name is displayed when the file is actually saved based on the list file path and list file number.

5. 4. status tab

Loning	102																
CH CH No.	input total count	output total count	input rate(cps)	output rate(cps)	deadtime (%)	ROI ROI No.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)
CH1 :	0.00	0.00	0.00	0.00	0.00	ROI1 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH2 :	0.00	0.00	0.00	0.00	0.00	ROI2 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI3 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI4 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH5 :	0.00	0.00	0.00	0.00	0.00	ROI5 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH6 :	0.00	0.00	0.00	0.00	0.00	ROI6 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH7 :	0.00	0.00	0.00	0.00	0.00	RO17 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
CH8 :	0.00	0.00	0.00	0.00	0.00	ROI8 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI9 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI10 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI11 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI12 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI13 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI14 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI15 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
						ROI16 :	0	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000

Figure 15 status tab

CH part	
input count	Total input count. Number of events for which input was received.
output count	Output total count. Number of inputs processed.
input rate (cps)	Input rate, the number of events with input per second.
output rate (cps)	Output rate, the number of inputs processed per second.
dead time (%)	Dead time percentage. Instantaneous value for each acquisition.

ROI部	
peak (ch)	Maximum count ch.
centroid (ch)	Center value (ch) calculated from the sum of all counts.
peak (count)	Maximum count.
gross (count)	Sum of counts between ROIs.
gross (cps)	Sum of counts between ROIs per second
net (count)	Sum of counts minus background between ROIs
net (cps)	Sum of counts per second minus background between ROIs.
FWHM (ch)	Half-width (ch).
FWHM (%)	Half-width (%). Half-width divided by ROI-defined energy x 100.
FWHM	Half-width.
FWTM	1/10th width.

5. 5. wave tab

Figure 16 wave tab

Graph	Waveform graph. waveform is displayed during measurement when wave is selected in mode
ON/OFF	Set whether to display the data on the graph. Checked: displayed, unchecked: not
	displayed.
СН	Select the CH of the waveform to be displayed: If the CH of DPP is selected, the
	graph displays the input signal RAW, the CFD processed CFD, and the integral
	processed QDC. The graph displays the signal of the preamplifier output signal
	input and differentiated, the signal of fast processed by timing filter, CF processed
	by CFD, and slow processed by trapezoidal filter.
threshold	Set the trigger threshold. Get the waveform when this threshold is exceeded. Can
	also be set by the cursor in the graph.
trigger point	Sets the position on the graph X-axis where threshold is applied. Can also be set
	by the cursor in the graph.
wave compress	Sets the X-axis time scale compression ratio. Used to display waveforms with long
	fall time.
wave free run	Acquire waveforms at random time intervals.
accumulation	Sets whether the waveform data of the last several acquisitions are superimposed
	on the display. Checked: Overlay display is performed, unchecked: Only the final
	waveform is displayed.
X,Y Scale	Sets the expansion and contraction of the display range of the X and Y axes of the
	graph. The "+" button expands the range when pressed, and the "-" button
	contracts it when pressed.
X axis calibration	Select the unit for the X axis of the graph from bin or ns.
Y axis calibration	Select the unit for the Y-axis of the graph from bin or mV.

5. 6. spectrum tab

Figure 17 spectrum tab

Graph	If histogran	n is selected in mode, an energy histogram is displayed during measurement						
spectrum on/off	Set wheth	er the histogram for each CH is displayed on the graph. If checked, the						
	histogram	is displayed; if unchecked, the histogram is not displayed.						
ROI CH	Select the	CH number to which the ROI (Region Of Interest) is applied. up to 8 ROIs						
	can be set	for one CH signal. when the ROI-SCA option function is available, a 50nsec						
	wide LVTT	L logic signal is output from the AUX output terminal on the front panel when						
	a signal is	detected between these ROIs. LVTTL logic signal is output from the AUX						
	output term	ninal on the front panel when a signal is detected between these ROIs. When						
	multiple ROIs are selected, the output is OR.							
ROI start	Set the sta	rting position of the ROI near the left hem of the peak. The unit is ch.						
ROI end	Set the end	d position of the ROI near the right hem of the peak. The unit is ch.						
energy	Define the	energy value of the peak position (ch). 1173 or 1332 (keV) for 60Co. When						
	"ch" is sele	ected in the following calibration, the peak between ROIs is detected and						
	keV/ch is c	alculated from the peak position (ch) and the set energy value and applied to						
	the result c	f the half value width calculation.						
calibration	Select the	unit of measure for the X axis. The X-axis label will change according to the						
	setting.							
	ch	Display in units of ch (channel); units such as FWHM of ROI are optional.						
	eV	The unit of \ensuremath{eV} is displayed by calculating the slope a and the intercept b of						
		the linear function y=ax+b so that ch becomes eV by two-point calibration of						
		two kinds of peaks (center value) and energy values in one histogram, and						
		setting them on the X axis.						
	keV	The slope a and intercept b of the linear function y=ax+b are calculated and						
		set on the X-axis so that ch is keV by two-point calibration of the two types						
		of peaks (center values) and energy values in a histogram. Example: If there						

are 1173.24 keV of 60Co in 5717.9ch and 1332.5 keV of 60Co in 6498.7ch,

		a is automatically calculated as 0.20397 and b as 6.958297 from 2-point							
		calibration.							
	manual	Set the slope a and intercept b of the linear function y=ax+b and the unit							
		label arbitrarily and set them on the x-axis. The units can be set arbitrarily.							
Y mapping	Select a m	apping for the Y axis of the graph. The Y-axis labels will change accordingly.							
	linear	Straight line (linear)							
	log	logarithm							
smoothing	Smoothing	function for calculating half-widths when statistics are low. Enabled when							
	checked, disabled when unchecked.								
X axis range	Right-click	on the X-axis and check Auto Scale to make it auto scale. If unchecked, it is							
	no longer a	auto scale, and the minimum and maximum values of the X-axis are fixed. To							
	change the minimum or maximum value, place the mouse pointer over the value to be								
	changed and click or double-click to change it by direct input.								
Y axis range	Right-click	on the Y-axis and check Auto Scale to make it auto scale. If unchecked, it will							
	no longer be auto scale and the minimum and maximum values on the Y-axis will be								
	fixed. To change the minimum or maximum value, place the mouse pointer over the								
	value to be	e changed and click or double-click to change it by direct input.							
-	Curcor	purport tool that allows you to may a the aurear on the graph when setting							

Cursor movement tool that allows you to move the cursor on the graph when setting ROI.

Zoom. Click to select and execute the following six types of zooming in and out.

Figure 18 Graph, Zoom in and out tool

(1) Quadrangle Zoom Using this option, click on the point on the display that you want to be the corner of the zoom area and drag the tool until the rectangle occupies the zoom area.

- (2) X-zoom Zoom into the area of the graph along the horizontal axis.
- (3) Y-zoom Zoom into the area of the graph along the vertical axis.
- (4) Fit zoom All X and Y scales are automatically scaled on the graph.
- (5) Zoom out to center point. Click the center point to zoom out.
- (6) Zoom in to center point. Click the center point to zoom in.

Pan Tool. You can grab the plot and move it around on the graph.

۳,

Ð

5. 7. timespectrum tab

Figure 19 timespectrum tab

* Settings related to timespectrum display. This setting is limited to the measurement within the board.

* timespectrum is generated based on the list data acquired in the list mode.

Graph	Time difference spectrum. list is selected in mode and timespectrum on/off is checked,
	the time difference spectrum is displayed during measurement.
CH1 checkbox	Select whether to display the time-difference spectrum. When checked, the time
	difference spectrum is displayed; when unchecked, it is not displayed.
Config part	
start CH	Select the CH number from which to obtain the start timing.
stop CH	Select the CH number from which the stop timing is to be obtained.
gain	Selectable from 1x to 1/128x; full scale at 1x is about 780 ns (about 3.9 ps per digit), full
	scale at 1/128x is about 100 μs (0.5 ns per digit).
coinc offset	Set the offset in 1ns increments.
coinc time	Set the coincidence time in 1ns increments. If the time difference between the start \ensuremath{CH}
	and stop CH detections is within this setting range, it is considered coincidence
	(simultaneous) and time difference data is acquired.
ROI part	
ROI START (ch)	Start channel of ROI
ROI END (ch)	End channel of ROI
FWHM (ch)	The calculated half-width between ROIs is displayed.
FWTM (ch)	The calculated 1/10 width between ROIs is displayed.
Xscale part	Select ch (channel) or ns display for the unit of the X axis.

5. 8. PSD tab *option

Figure 20 PSD tab

* Generates PSD graphs and cursor area graphs based on the list data obtained in list mode.

PSD Graph This is a two-dimensional histogram using the wave height values within two lists of data obtained by coincidence (coincidence), where the type of data is arbitrarily selected on the X and Y axes, respectively, and the frequencies are accumulated at the intersection of the X and Y axes.

NOTE

The number of channels on the X and Y axes is 16384, but this requires approximately 537 MB (16384 x 16384 x 2 Bytes (counts)) of memory, which is compressed by the COMPRESS setting described below.

PSD axis type Select items in the list data to be assigned to the X and Y axes of the PSD graph: the X axis is x1/x2 from the combination of x1 and x2; the Y axis is y1/y2 from the combination of y1 and y2. The selections are TOTAL, FALL, RISE, QDC, and 1.

magnification The settings are summed up against the values on the X and Y axes of the PSD graph. For example, if this setting for the X-axis is set to 1000 and FALL is selected for x1 and RISE for x2, the X-axis will be FALL/RISE, but if the quotient is 1.234, the value will be multiplied by 1000 to 1234.

compress
 This is a setting related to compression for up to 16384 channels. 1/8 (2048) is
 selected to represent a 16384 x 16384 range in a 2048 x 2048 range. In this case,
 the data for each of the 8 channels is summed up to 1 and stored in 1 of the 2048
 channels.

6. DPP initialization

6. 1. Connection

- (1) Make sure all equipment (VME power rack, HV (high voltage power supply), PC) is OFF
- (2) Connect the detector to the HV with a cable with SHV connector.
- (3) Connect the anode output signal from the detector to CH1 of this instrument with a LEMO connector coaxial cable. If a BNC connector is used, use a BNC-LEMO conversion adapter.
- (4) Connect this device and a PC with a LAN cable.

6. 2. Power ON

- (1) Turn on the VME power supply crate.
- (2) Turn on the power to the PC. Start this application.
- (3) Turn on the high-voltage power supply and apply the appropriate voltage to the detector.

6. 3. Waveform Measurement

(1) First, check the input signal from the detector in waveform mode.

							CH	A	DVAN	CE																							
CH enable	P	olarity	LLD (digit)		ULD (digit)	į	DP	P	anak gain (mul	og tiple)	baseli restor filter()	ne rer µs)	thre (dig	shold it)	timing	CFD function (multiple)	on ple)	CFD delay (digit)	CFD walk (digi	t)	QDC sum/p	eak	QDC pretrig (ns)	ger	QDC filter (ns)		QDC integr range	al (ns)	QDC full so (mult	ale iple)	signal type	
CH1	: [neg 🖌	10	쉬	8000		CH	11 :	x3		4μ		50		CFD	×0.21	-	12ns	-	20	-	sum	-	-8ns		10ns	-	128	-	1/4		nomal sig	
CH2	: [pos 🗸	10	허	8000		Cł	-12 :	x3	-	4μ	-	50		CFD	×0.21	•	12ns	-	20		sum	-	-8ns		10ns	-	128		1/2	•	nomal sig	-

Figure 21 Waveform measurement setting example

(2) Open the wave tab, confirm the settings shown in the figure below, and then click the menu Clear \rightarrow Start. You can see the waveform from the detector on the graph.

Figure 22 Waveform Measurement Screen

Note the following

If wave data is not displayed on the graph, it may not be triggered. First, to check the baseline, check "wave free run" in the wave tab and execute the menu $Config \rightarrow Clear \rightarrow Start$. You can check the baseline and the approximate wave height of the signal.

Figure 23 Baseline confirmation in progress

Next, uncheck "wave free run" and gradually increase the threshold from about 10, and note the threshold value at which the waveform is captured well, as shown on the previous page. This note will be used for later settings.

Check if the wave height is too large for saturation. If the wave height is too large, lower the amplitude of the input signal to the instrument by setting the ANALOG GAIN in the CH tab in the CONFIG tab to x1 or by lowering the applied high voltage power supply of the detector.

6. 4. Energy Spectrum Measurement

(1) Set "mode" to "hist", make the following settings in the config tab, and then click on "Config" menu. Set the threshold value that was noted in the waveform measurement to the threshold in the config tab.

device Dev1 💌 mode hist	IP address 192.1 measuremen time	International internatione internatintereextended internatinternational international inter	acq.
config file statu	JS	CH ADVANCE	
CH enable polarity CH1 : neg CH2 : pos	LLD ULD (digit) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DPP analog panlog baseline metorer (multiple) threshold mmg (digit) CFD function (digit) CFD function (digit) QDC sum/peak (digit) QDC pretringer (ng) QDC function (multiple) QDC function (digit) QDC sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC function (multiple) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) QDC function (multiple) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) CPD sum/peak (ng) QDC function (multiple) QDC functio	

Figure 24 config tab

(2) Open the spectrum tab, confirm the settings shown in the figure below, and then click the menu Clear \rightarrow Start. After execution, the following spectrum will be displayed.

Figure 25 Example of energy spectrum measurement * Source is Cs-137

Note the following points

Check CH1 in spectrum on/off so that the spectrum of CH1 can be displayed. When analyzing peaks, set the ROI.

(3) To end the measurement, click on the menu Stop.

6. 5. List and Time Difference Spectral Measurements

(1) Set "mode" to "list" and make the following settings in the config tab, then click on "Config" menu. Set the threshold value that was noted in the waveform measurement to the threshold in the config tab.

device Dev1 V IP address 192. mode fist measureme time	168.10.128 memo nt 48:00:00 real time 00:00:00	ive time 00:00:00 file size(Byte)	ement 48:00:00 🔄 list read byte(byte) 16000 🔄
CH enable polarity LLD (digit) ULD (digit) CH1 : neg ↓ 10 ♦ 8000 ♦ CH2 : neg ↓ 10 ♦ 8000 ♦	CH ADVANCE DPP analog gain (multiple) baseline restorer filter(us) threshold (digit) timin type CH1 : XI 4µ 50 CPD CH2 : XI 4µ 50 CFD	g CFD CFD delay valk (digit) QDC QDC (multiple) (digit) 20 (digit) (digit) 20 (digit) 2	QDC filter (ns) QDC full scale (multiple) gpc signal type 10ns 120 I/4 nomal sig nomal sig nomal sig 1/4 nomal sig n

Figure 26 config tab

(2) Check the list save checkbox in the file tab and set the location and name of the file.

				status	file	config
		list save		ve	gram sa	file histo
	-	list file path D:¥TEMP¥test_	ave	ontinuous	gram co	histo
_	file name	list file number		e path	gram fil temp	histo C:¥t
	test_000003.bin	3				
			(sec)	e save tim	gram fil	histo 5
	file name test_000003.bin	list file path D:¥TEMP¥test_ list file number 3	(sec)	e path e save tim	gram fi temp gram fil	histo C:¥t histo 5

Figure 27 file tab

- (3) Execute menu config \rightarrow clear \rightarrow start to get list data.
- (4) If you check the "time spectrum ON/OFF" checkbox when acquiring data in the list mode, a time difference spectrum can be displayed in the timespectrum tab. Note, however, that if you try to generate a time difference spectrum at high count output, the computer will not be able to calculate it in time, and an error will occur in the list data acquisition.

Figure 28 timespectrum screen, example of LaBr₃(Ce) vs LaBr₃(Ce)

6. 6. Coincidence and anti-coincidence outputs

The measurement information from CH1 to CH4 can be time, energy, and waveform fractionation information. In addition, it can determine the coincidence and anti-coincidence between input channels and output logic signals from the front panel terminals.

By inserting this logic signal output into GATE or VETO on the front panel, GATE can be applied to CH5 to CH8 measurements and measurement information can be picked up.

Fiure 29 Block diagram of coincidence logic output

7. DSP initialization

7. 1. Connection

- (1) Make sure all equipment (VME power rack, HV (high voltage power supply), PC) is OFF.
- (2) Connect the detector to the HV with a cable with SHV connector.
- (3) Connect this device and a PC with a LAN cable.

7. 2. Power ON

- (1) Turn on the VME power supply crate.
- (2) Turn on the power to the PC. Launch this application.
- (3) Turn on the high-voltage power supply and apply the appropriate voltage to the detector.

7. 3. Confirmation of preamplifier output signal

(1) Connect the preamplifier output signal to an oscilloscope and check the wave height (mV) and polarity. (In the case of a transistor-reset preamplifier, a right ascension indicates positive polarity, and a right descent indicates negative polarity.

Figure 30 LEFT Resistive feedback type for negative polarity, **RIGHT** Transistor reset type for positive polarity

(2) In the config tab, set the polarity of CH5 or later on the DSP side to the polarity that you have confirmed, and click on the menu Config.

Figure 31 config tab

From now on, the main settings of the DSP are configured in the DSP section of the CH tab in the config tab.

7. 4. Analog fine gain and analog pole zero adjustment of preamplifier output signal

The ultra-low noise high-speed programmable gain amplifier enables high-precision amplification of signals from preamplifiers that require fast rise time and low noise. The analog course gain can be set by selecting from 1x, 2x, 5x, and 10x in this application.

The setting method varies depending on whether the output signal of the preamplifier of the detector input to this device is a resistive feedback type or a reset type.

7. 4. 1. Resistive feedback preamplifier output signal

Preamplifier output signals usually have a decay of about 50µs to 100µs. The decay is too long for this device to process, so it cannot handle high counts. Therefore, the signal is differentiated to a time constant that is easy to process internally. The undershoot that occurs in such a case is shown in the following equation, and the overload characteristic of this device deteriorates in the same way as in the conventional analog system.

Undershoot (%) = different amplitude / preamp decay time

(1) It is necessary to set the pole zero adjustment to enable (factory default) on the board. Turn off all power supplies and slowly pull out this unit from the power rack. For the unit type, unscrew the lid and open it slowly, taking care of the cables attached to the lid. As shown in the red frame in the photo below, the pole zero adjustment is enabled by inserting one of the jumpers on the CH that inputs the preamp output signal.

Photo 6 Transistor reset type setting (Insert JP15 for CH7)

(2) Check the differential preamplifier output signal from the MONI output terminal on the front panel with an oscilloscope, and select the appropriate CH-preamp in the DAC monitor type on the CH tab in the config tab.

Set the analog course gain so that the wave height including the energy element to be measured in the preamp signal is within 1V.

For example, if you want to measure energy up to 2000 keV, if you have a 60Co checking source, set the overlapped area of 1332keV@60Co to 0.666V (1V÷2000keV×1332keV) or less.

(3) Vary the analog pole zero value and adjust the pole zero so that the falling edge is flattened while switching the oscilloscope's vertical and horizontal ranges.

7. 4. 2. Transistor-reset preamplifier output signal

(1) The board must be set to disable the pole zero adjustment. If the power can be turned off, turn off all power and slowly pull out this unit from the power rack. If it is a unit type, unscrew the lid and open it slowly, taking care of the cables attached to the lid. As shown in the red frame in the photo below, the pole zero adjustment can be disabled by removing and moving one of the jumpers on the CH that inputs the preamp output signal.

Photo 7 Transistor reset type setting (In case of CH5, remove JP6 and insert into JP8)

If the power cannot be turned off, set the ANALOG POLE ZERO setting to 0.

- (2) Check the oscilloscope for the preamp signal, which is a derivative of the preamplifier output signal from the MONI terminal on the front panel.
- (3) As with the resistive feedback type described above, the wave height including the energy element of the preamp signal is adjusted to keep it within 1V.

7. 5. FAST filter setting

The instrument has FAST filters to obtain time information during radiation detection and SLOW filters to obtain energy (wave height). First, the settings related to the FAST system filter must be configured. The settings have the same characteristics as general timing filter amplifiers.

The light blue waveform in the figure shows the waveform when the FAST system differential FAST diff is set to 200 ns and the FAST system integral FAST integral is set to 200 ns.

Where:

 au_1 : differential time, au_2 : integral time PZ: polezero

Describes the settings for FAST-type filters.

- (1) Connect the MONI output terminal to the oscilloscope, select the appropriate DAC monitor CH, and set the DAC monitor type to fast. Prepare to see this signal on the oscilloscope.
- (2) Set the constant of the FAST differential circuit with fast diff, selecting from ext (excluded, no filter used), 20, 50, 100, 200, and 500.
- (3) Set the constant of the FAST system integral circuit with fast integral. select from ext (excluded, no filter used), 20, 50, 100, and 200.

The fast diff and fast integral settings depend on the detector and signal conditions. Examples of settings are shown below

Detector	Feature	fast diff	fast integral
LaBr ₃ (Ce) scintillator	Fast risetime	20	ext or 20
Ge semiconductor	High energy resolution	100	100

Table 1 fast diff and fast integral configuration examples

(4) Set the threshold for the signal detection of the FAST system filter at the fast trigger threshold. When the threshold is exceeded, leading edge timing (LET) is time-stamped. It is also used as a threshold for the baseline restorer and pileup rejector. This value should be set to the lowest possible value that can be discriminated from noise when connected to a detector. The default value is 25.

First, input a somewhat large value (around 100) and observe the input rate (cps), then gradually decrease the fast trigger threshold and find a value at which the input rate (cps) becomes large. Since this value is the boundary between signal and noise, set the input rate (cps) to +3 to +10 above this value.

7. 6. SLOW filters setting

The SLOW trapezoidal filter performs SLOW trapezoidal shaping on the preamplifier output signal. As an algorithm for the Trapezoidal Filter, the filter block, which is composed of a pipeline architecture, calculates the delay, add/subtract, and integral values required for the Trapezoidal Filter in synchronization with the 100 MHz clock of the ADC.

$$\begin{split} d(n) &= v(n) - v(n-k) - v(n-l) + v(n-k-l) ,\\ p(n) &= p(n-1) + d(n) ,\\ r(n) &= p(n) - M * d(n) , \quad n \geq 0 ,\\ s(n) &= s(n-1) + r(n) , \quad n \geq 0 ,\\ Where: \\ k : risetime ,\\ l : risetime ,\\ l : risetime + flottoptime ,\\ M : pole zero \end{split}$$

References:

[1] V.T. Jordanov and G.F. Knoll, Nucl Instr. and Meth.A353(1994)261-264

The figure below shows the difference in pulse response between the conventional analog Semi Gauss Filter and the DSP, which has about 1/2 the time to peak and 1/3 the pulse width compared to the Semi Gauss Filter.

Figure 42 Difference in response between Trapezoidal Filter and Semi Gauss Filter

Despite the faster pulse response of the DSP, a comparison of the energy resolution using the Ge semiconductor detector shows that the same high resolution can be obtained at lower rates at the Input Rate, as shown in the figure below, and at higher rates, the data remains more resolved than the Semi Gauss Filter. The higher rate data can be obtained with better resolution than with the Semi Gauss Filter. The digital Trapezoidal Filter process provides higher counts and richer data, allowing a wider variety of analyses than the Semi Gauss Filter.

Figure 43 Difference in counting rate and energy resolution between Trapezoidal Filter and Semi Gauss

Filter

SLOW filter settings are described.

- (1) Connect the MONI output terminal to the oscilloscope and set the DAC monitor type to the appropriate CH-slow. Prepare to see the signal on the oscilloscope.
- (2) To achieve the same conditions as when the linear amplifier shaping time is set to 3 µs, set the slow rise time to 6000 ns. This value affects the energy resolution. A shorter setting allows higher counts, but the energy resolution is reduced. Conversely, setting it too long may result in a low count. The default value is 6000ns.
- (3) Set the slow flattop time. For resistive feedback preamplifier output signals, set the value from 0 to 100% of the rise time, twice the slowest rise. The recommended value is 608ns. (In the case of transistor reset type, adjust in ±96ns increments from 608ns while checking the energy resolution (half value width).
- (4) Set SLOW POOL ZERO. This setting reduces overshoot and undershoot at the falling edge of SLOW filters. The default value is 680. (This value varies depending on the detector, so use an oscilloscope to set the optimum value.

Figure 44 slow pole zero, LEFT: before adjustment with undershoot, RIGHT: after adjustment

7. 7. Setting the SLOW threshold

First, input a somewhat large value (around 100) and observe the output rate (cps), then gradually decrease the slow trigger threshold, and find a value at which the output rate (cps) becomes large. This value is the boundary between signal and noise, so set the value to +3 to +10 from that value. The default value is 30.

8. Measurement

8.1. Setting

- (1) Click Menu Config to send all settings to this device. After the Config menu is executed, the histogram data in the DSP will be initialized.
- (2) To initialize the last measured histogram or measurement results, click on Menu Clear. To continue with the histogram data without initialization, start the next measurement without clicking on Menu Clear.

8. 2. Start measurement

Click on the menu Start. The measurement will start, and the following will be performed.

- The measurement status of each CH is displayed in the CH section.
- The acq LED blinks.
- The measurement time displays the set measurement time.
- The elapsed time acquired from the device is displayed in "real time".
- live time" displays the live time acquired from the device.
- dead time" displays the dead time acquired from this device.
- The dead time ratio displays the ratio (%) of dead time/real time.

8. 3. Histogram mode

When "hist" is selected in "mode" and measurement is started, the following is executed.

- Histogram is displayed in mode.
- The calculation results for each ROI1 to ROI8 are displayed in the ROI section.
- Histograms are displayed in the CH and histogram tabs.

Figure 45 histogram mode measurement

8.4. List mode

When "list" is selected in "mode" and measurement is started, the following is executed.

- The mode is displayed as "list".
- The save LED blinks and the file size (in bytes) displays the size of the file currently being saved.
- If the buffer reaches 100%, it will be overflowed, and data will be missed. Please make sure that the sum of output rate (cps) of all CHs does not exceed 160 kcps.

Figure 46 list mode measurement

8. 5. Stop measurement

- When the measurement mode is "real time", the measurement is terminated when the real time reaches the measurement time.
- When the measurement mode is "live time," the measurement is terminated when the live time reaches the measurement time.
- If you want to stop the measurement, click "Stop" menu. Measurement is stopped after execution.
- The save LED turns off.
- Update of real time stop.
- Update of live time stop.
- Update of dead time stop.
- Update of file size (Byte) stop.
- Update "dead time ratio" stop.

9. Quit

Click on the menu File - quit. After a confirmation dialog appears, click the quit button to exit this application and the screen will disappear. The next time the application is launched, the settings at the time of quit will be applied.

10. File

10. 1. Histogram data file

- (1) File format CSV text format, separated by commas
- (2) File name Set arbitrarily
- (3) Component It consists of 4 parts: "Header" part, "Calculation" part, "Status" part and "Data" part

Measurement mode, Real time or Live time
Measured time. Unit is seconds.
Real time
Measurement start time
Measurement end time
polarity
LLD
ULD
CH1 \sim 4 analog gain
baseline restorer filter
threshold
timing type
CDF function
CFD delay
CDF walk
QDC sum/peak
QDC pretrigger
QDC filter
QDC integral range
QDC full scale
signal type
analog gain
analog pole zero
ADC gain
fast diff
fast integral
fast trigger threshold

SFR	slow risetime
SFP	slow flat top time
SPZ	slow pole zero
STH	slow trigger threshold
DCG	digital coarse gain
DFG	digital fine gain
IHW	inhibit width
TMS	timing select
CFF	CFD function
CFD	CFD delay
DBS	dsp bit sel
*Saving per CH ends here.	
MOD	Mode
MMD	Measurement mode
MTM	Measurement time

[Calculation]

ubject of the ROI.
en ROIs
eV)
(keV)

[Status]

*Saved for each CH below	
input total	Total count
output total	Output count
input rate	Total count rate
output rate	Output count rate
dead time	Deadtime (%)

[Data] Histogram data of each channel

10. 2. Waveform data file

- (1) File format CSV text format, separated by commas
- (2) File name Set arbitrarily

(3) Component

It consists of 4 parts: "Header" part, "Calculation" part, "Status" part and "Data" part

The Header, Calculation, and Status sections are the same as the histogram data described above. The Data section contains the following types of waveform data for the CH selected in the wave tab.

- For CH1 to CH4 DPP RAW, CFD, QDC 1024 points for APV8M24 512 points for APV8M44
- For CH1 to CH4 preamp, fast, cfd, slow 512 point for each.

10.3. List data file

(1) File format

Binary, network byte order (big-endian, MSB First) format

(2)File name

> The file number is the file path set in the "list file path" in the "config" tab, with 0's and 6 digits appended to it. For example, if list file path is set to D:¥data¥123456.bin and file number is set to 1, the file size is D:\u00e4data\u00e4123456_000001.bin.

> When list file size is reached, the file being saved is closed. After that, it automatically moves up the list file number by one, opens a new file, and continues to save the data in the file.

(3) Component

80 bits per event (10 Byte, 5 WORD)

79	78				64			
WAV[0]	TDC[5440]							
63					48			
		TDC[3	3924]					
47					32			
		TDC[2	238]					
31		24	23		16			
	TDC[70]			TDCFP[70]				
15 13	12				0			
CH[20]			QDC[120]					

Bit79

Presence of waveform, 0: without waveform, 1: with waveform,

- Bit78 to Bit24 TDC count. 55bit. APV8M24 is 1ns per Bit, APV8M44 is 2ns per Bit.
- Bit23 to Bit16
 - TDCFP, decimal count. 8bit. APV8M24 is 3.90625ps Bit.

Interpolation between sampling points $1ns \div 256 = 3.90625 \text{ ps.}$

For CH5 to CH8, TDCFP [3..0] is fixed at zero

- CH number. 0 is CH1, 1 is CH2, 7 is CH8 Bit15 to Bit13
- Bit12 to Bit0 QDC integral or PEAK value.
 - Unsigned 13-bit integer; CH1 to CH4 of DPP are the waveforms collected and filtered, and the waveforms are integrated over a set range from the point where the threshold is exceeded; CH5 to CH8 of DSP are PHA values.

(4) Component

128 bit per 1 event (16 Byte, 8 WORD)

Bit127							112
				RISE[1	50]		
111							96
				FALL[1	50]		
95							80
TOTAL[150]							
79	7	8					64
WAV[0]				Т	DC[5440]		
63							48
TDC[3924]							
47							32
TDC[238]							
31				24	23		16
TDC[70]				TDCFP[70]			
15 <i>´</i>	13	12					0
CH[2(D]	QDC[120]					

図 47 list データフォーマット

Bit127 to Bit112 • Bit111 to Bit96

RISE, Waveform Rise Partial Integral value. Unsigned 16-bit integer.

FALL, Waveform falling partial integral value. Unsigned 16-bit integer. TOTAL, Total Waveform Integral value. Unsigned 16-bit integer.

Bit95 to Bit80 •

•

- Bit79 to bit0 •
- Same as 80-bit list data.

1 O. 4. List-Wave data file *Option

(1) File format

Binary, network byte order (big-endian, MSB First) format

(2) File name

Set arbitrarily

(3) Component

① Normal (in case of list data part 80Bit)					
Bit79	78				64
WAV[0]		TDC [5440]			
63					48
TDC [3924]					
47					32
TDC [238]					
31		24	23		16
TDC [70] TDC FP[70]			TDC FP[70]		
15 13	3 12				0
CH[20]			QDC[120]		
	·				
wave number[150]					
header[3116]					
header[150]					
wave data[150] × wave number 分					

Figure 48 list-wave data format (normal)

- Bit79 to bit0 Same as 80-bit list data.
- Number of waveform point wave number. 16 Bit.
- Waveform head header. 32 Bit. The following CH information is added as a header CH1 header 0x57415630 (=WAV0) CH2 header 0x57415631 (=WAV1) CH3 header 0x57415632 (=WAV2)
- Waveform data
 Waveform data
 CH4 header
 0x57415633 (=WAV3)
 wave data. 16 bits per waveform point, with an offset of 16384 digits.
 Waveform information for the wave number is added.

2 List with PSA (in case of list data part 128Bit)					
Bit127					112
	RISE[[150]				
Bit111					96
	FALL[150]				
Bit95					80
		TOT	AL[150]		
79	78		,		64
WAV[0]		, TDC/54_40]			
63					48
		TDC	[39 24]		10
47			[32
31		24	23		16
51			25		10
45	40				0
15	13	12	000110	61	0
СН[2.	CH[20] QDC[120]				
wave number[150]					
header[3116]					
header[150]					
wave data[150] × wave number 分					

Figure 49 list-wave data format (list data with PSA

- Bit127 to bit0 Same as 128-bit list data.
- Number of waveform point wave number. 16 Bit.
- Waveform header header. 32 Bit. The following CH information is added as a header CH1 header 0x57415630 (=WAV0) CH2 header 0x57415631 (=WAV1) CH3 header 0x57415632 (=WAV2) CH4 header 0x57415633 (=WAV3)
 Waveform data wave data. 16 bits per waveform point, with an offset of 16384 digits. Waveform information for the wave number is added.

10. 5. PSD data file *Option

- (1) File format CSV text format, separated by commas
- (2) File name Set arbitrarily

•

(3) Component
 The data in the PSD 2D histogram and the cursor area spectrum are variable-length data with a count of 1 or more.

```
[PSD]
XAxisCursorRange
                                X axis range start and end channels at cursor
YAxisCursorRange
                                Y-axis range start and end channels at cursor
Commpress (x/16384)
                                Number of channels of compression ratio
[PSD 2D histogram]
#FALL, TOTAL, Counts
                                X-axis: data in the selected List, Y-axis: data in the selected List, total
6952,9192,1
:
Variable length. Max. 8192×8192=67,108,864
[cursor area spectrum]
FALL, Counts
                                Data in selected List on X-axis, Integral coun
6644,0
÷
Variable length. Max. 8192
```

11. Troubleshooting

11. 1. Connection error occurs

If you get a connection error at startup or in menu config, your network may not be connected properly. In this case, check the following.

(1) Confirm that the IP in the configuration file config.ini is set to 192.168.10.128, that each port number in the [System] section is defined as follows, and that the IP address is the same when you start this application

[System]

PCConfigPort = 55000

PCStatusPort = 55001

PCDataPort = 55002

DevConfigPort = 4660

DevStatusPort = 5001

DevDataPort = 24

SubnetMask = "255.255.255.0"

Gateway = "192.168.10.1"

(2) Check if the PC's network information is configured to connect to this device. The default values for this device are as follows.

IP address	192.168.10.128
Sub-net mask	255.255.255.0
Default gateway	192.168.10.1

- (3) There is a conflict with an arbitrary port number on the PC side for the UDP connection. In this case, define another number for Port in the configuration file config.ini before startup.
- (4) Turn on the power with the Ethernet cable connected.
- (5) Execute the ping command at the command prompt to check if the device and PC can communicate.
- (6) Turn the power of the device back on and execute the ping command again.
- (7) Turn off virus detection software and firewall software.
- (8) Always turn on power-saving functions such as PC sleep mode.
- (9) Disable the wireless LAN function for laptops, etc.

11. 2. Command error occurs

The number of valid CHs for this device may be incorrect. Check the following.

- (1) Check the number of DSP CHs used
- (2) Check that the number of CH in the config tab is the same as the number of CHs to be used.

11. 3. Histogram is not displayed

If nothing appears on the graph after executing Menu Start, check the following

- (1) Set CH1 to ON in spectrum on/off in spectrum tab.
- (2) Check if input rate (cps) and output rate (cps) are counting.
- (3) Set the DAC monitor type to the appropriate CH-preamp and check that the preamp wave height is not too small or too large, and that it is within 1V.
- (4) Set the DAC monitor type to "fast" and check if the FAST filter signal is output.
- (5) Set the DAC monitor type to slow and check if the signal from the SLOW-type filter is being output
- (6) Adjust the fast trigger threshold and slow trigger threshold values so that they are not too small or too large, and while watching the input rate (cps) and output rate (cps) counts, change the settings down from 100 to about 30, so that the two rates are close in count.
- (7) Right-click on the X and Y axes of the graph to auto scale.

11. 4. Change IP address

Refer to the attached "Instruction Manual: How to Change the IP Address of the APG5107-Equipped

Product". (If you do not have the attached document, please contact us.

1 2. Performance of APV8M44、8M24

12.1. Resolution of DSP

The latest digital pulse processing technology enables high-resolution and high-count-rate spectroscopy.

Throughput is achieved by employing digital signal processing using FPGA, eliminating the dead time of conversion, and reset times in conventional MCA. The throughput of this device is well consistent with the paralysis model curve $m=ne^{((-n\tau))}$ where $\tau = r$ is time+flattoptime. However, since the response speed of the detector is also a factor, the slower the detector or the higher the counts, the greater the difference will be.

TechnoAP Co., Ltd. Add: 2976-15 Mawatari, Hitachinaka-shi, Ibaraki, Postcode: 312-0012 TEL: +81-29-350-8011 FAX: +81-29-352-9013 URL: http://www.techno-ap.com e-mail: info@techno-ap.com